
Relational Data Model Concepts

2.1 RELATIONAL DATA MODEL CONCEPTS

The relational model uses a collection of tables to represent both data and the relationship among
those data.

• A table is a collection of rows and columns. Each column has a unique name.
• Each row in the table represents a collection of related data values.
• In the relational model, a row is called a tuple, a column is called an attribute and the table

is called a relation.

Student Attributes __ I

".,tI" "
__ I __ I

" I
- I - , -

RolCNo Name City Age

----- 1 Vijay Gr. Noida 22

----- 2 Santosh Delhi 20

- ----- 3 Gopal Noida 23

2.2 INTEGRITY CONSTRAINTS

Most database applications have certain integrity constraints that must hold for the data.
• The simplest type of integrity constraint involves specifying a data type for each data item.
• Integrity constrains can be classified as :

Entity integrity
Integrity constraint <

Referential integrity

2.2.1 Entity Integrity
The entity integrity constraints states that no primary key value can be Null. This is because the

primary key value is used to identify individual tuple in a relation, having Null values for the primary
key implies that we cannot identify some tuples.

e.g., If two or more tuples has Null for their primary key, then we might not be able to distinguish
them.

2.2.2 Referential Integrity

We wish to ensure that a value that appears in one relation for a given set of attributes also
appears for a certain set of attributes in another. This condition is called "Referential Integrity".

• This constraint establishes a relationship between records across a master and a detail tables.

RELATIONAL DATA MODEL CONCEPTS 57

This relationship ensures :
(i) Records cannot be inserted into a detail table if corresponding records in the master table

do not exist.
(ii) Records of the master table cannot be deleted if corresponding records in the detail table

exist.

2.3 DOMAIN CONSTRAINTS

It is a pool of values for which we can extract the values for set by taking some conditions. We
have seen that a domain of possible values must be associated with every attribute. We see the number
of standard domain types such as Integer types, character types and date/time types" defined in SQL.

• Domain constraints are the most elementary form of integrity constraint. They are tested easily
by the system whenever a new data item is entered into the database. It is possible for several
attributes to have the same domain.

e.g., The attributes customer-name and Employee-name might have the same domain. The set
of all person names.

• The domain constraints not only allows us the test values inserted in the database, but also
permits us to test queries to ensure that the comparison made make sense.

e.g., The create domain clause can be used to define new domains.
Create domain dollars numeric (12, 2) :
Create domain pounds numeric (12, 2) :
An attempt to assign a value of type dollars to a variable of type pounds would result in a syntax

error, while both are of the same numeric type.

2.4 RELATIONAL ALGEBRA

Relational algebra is a procedural query language. It consists of a set of operations that take one
or two relations as input and produce a new relation as their result.

The functional operations in the relational algebra are :
• Select
• Project
• Union
• Set difference
• Cartesian product
• Rename
• Intersection
• Division
• Join
• Natural Join

2.4.1 Select Operation

Select tuples that satisfy a given predicate. The notation of select operation is :
Op (R)

where R -+ input relation
P -+ predicate that is to be evaluated

e.g., Select those account which belo~gs the SBI.
(account)

°branch name = SBI

58

Note: We can use following predicate.
(i) = (equal to)
(ii) < (less than)
(iii) > (greater than)
(iv) "# (not equal to)
(v) :S (less than or equal to)
(vi) ~ (greater than equal to)
(vii) /\ (and)

DATABASE MANAGEMENT SYSTEMS

e.g., Select loans which has been taken from the SBI and whose amount is greater than 50,000
each.

Ans.
(loan)

a
branch_name = SBI 1\ amount> 50,000

2.4.2 Project-Operation

The project operations is a uniary operation that returns its argument relation, with certain
attributes left out.

Suppose, we want to list all loan numbers and the amount of the loan but do not care about the
branch name. The project operation allows us to produce this relation.

It is denoted by n (Pi).
e.g., Find the names of all customers living in the New Delhi.

(Customer)
Ans. ncustomer_name (ocustomer_clty = "New Delhi")

e.g., To find the loan number and amount of all loans.

(loan)
n

loan_no, amount
Ans.

2.4.3 Union Operation

The union of two sets combines all data that is appearing either one or both relations.
For the union operation r U s, the relation rand s must have the same number of attributes.
e.g., To find the names of all bank customers who have either an account or a loan or both.
Ans. Let the two relations arc:

Depositor: Customer Name Ace No

Vijay A-lOl

Gopal A-102

Ajay A-103

Alok A-104

Sanjay A-lOS

Borrower: Customer Name Loan_No

Raj L-17

Ravi L-18

Ramesh L-19

Santosh L-20

Rohit L-2I

RELATIONAL DATA MODEL CONCEPTS

(Borrower) (Depositor)
n Un

Customer name Customer name - -
The query gives the result as :

2.4.4 Set-Difference Operation

Customer Name

Vijay

Gopal

Ajay

Alok

Sanjay

Raj

Ravi

Ramesh

Santosh

Rohit

59

The set-difference operation, allows us to fmd tuples that are in one relation but are not in
another.

The expression '-s produces a relation containing those tuples in, but not in s.
e.g., Find all customers of the bank who have an account but not a loan.

(Depositor) (Borrower)
Ans.n -n

Customer_name Customer_name

The result of this query will be

2.4.5 Cartesian Product Operation

Customer Name

Vijay

Gopal

Ajay

Alok

Sanjay

The cartesian product operation, allows us to combine information from any two relations.
The cartesian product of relation '1 and '2 as '1 X '2.

Roll No Name Subject

1 Vijay English

2 Gopal

3 Santosh Math

4 Sanjay

60 DATABASE MANAGEMENT SYSTEMS

'1 X '2 : The results of query will be

Roll No Name Subject

1 Vijay English

2 Gopal English

3 Santosh English

4 Sanjay English

1 Vijay Math

2 Gopal Math

3 Santosh Math

4 Sanjay Math

2.4.6 Division Operation
The symbol of this operator is + and it use for select "for all".
The division operator can apply as

A= SNo PNo

Sl PI

SI P2

SI P3

SI P4

S2 PI

S2 P2

S3 P2

S4 P2

B~~ C~ ffi P2 P2

P4

D= PNo

PI

P2

P4

A+B= SNo A+C= SNo

SI SI

S2

S3

S4

RELATIONAL DATA MODEL CONCEPTS

A+D=~
CD

2.4.7. Rename-Operation
In relational algebra, A rename is a unary operation written as

Palb (R)

where
• a and b are attribute names
• R is a relation.
The result is identical to R except that the b field in all tuples is renamed to an a field.
e.g., Consider the Employee relation and its renamed version :
Employee:

Name Emp_Id

Vijay 3415

Gopal, 2241

PEmp- Name/Name (Employee)

Emp_Name Emp_Id

Vijay 3415

Gopal 2241

2.4.8 Join
The join operator allows the combining of two relations to form a single new relation.
For Ex. Emp. Table Salary Table

Emp_Id Name S Id Salary

100 Vijay 100 15000

101 Gopal 101 25000

102 Santosh 102 20000

103 Sanjay 103 15000

Result of Emp Join Salary

Emp_Id Name S Id Salary

100 Vijay 100 15000

101 Gopal 101 25000

102 Santosh 102 20000

103 Sanjay 103 15000

61

2.4.8.1 Natural Join: Natural join is a dyadic operator that is written as Rand S, where Rand
S are relations. The result of the natural join is the set of all combinations of tuples in Rand S that
are equal on their common attribute names.

For Ex. : Consider the tables employee and Dept and their natural join.

62 DATABASE MANAGEMENT SYSTEMS

Employee Dept

Name Emp Id Dept Name Dept Name Manager

Sumit 100 Finance Finance Gopal
Sanjay 101 Sales Sales Santosh
Raja 102 Finance Production Vijay

Sanjeev 103 Sales

Employee Dept

Name Emp Id Dept Name Manager

Sumit 100 Finance Gopal

Sanjay 101 Sales Santosh

Raja 102 Finance Gopal

Sanjeev 103 Sales Santosh

2.4.8.2 Semi Join: The semi join is similar to the natural join and written as R 0 S, where Rand
S are relations. The result of the semi join is only the set of all tuples in R for which there is a tuple
in S that is equal on their common attribute names.

For Ex. : Consider the tables employee and Dept and their semi join.
Employee Dept

Name Emp_Id Dept_Name Dept_Name Manager

Sanjay 100 Finance Sales Vijay

Shally 101 Sales Production Gopal

Santosh 102 Finance

Sumit 103 Production

Employee 0 Dept

Name Emp_Id Dept_Name

Shally 101 Sales

Sumit 103 Production

2.4.8.3 Anti Join: The anti join, written as R l> S, where Rand S are relations, is similar to the
natural join, but the result of an anti join is only those tuples in R for which there is not a tuple in S
that is equal on their common attribute names.

For Ex. : Consider the table employee and Dept and their anti join.
~~~ D~ 

Name Emp_Id Dept_Name Dept_Name Manager 

Sumit 100 Finance Sales Vijay 

Sanjay 101 Sales Production Santosh 

Raja 102 Finance 

Sanjeev 103 Sales 



RELATIONAL DATA MODEL CONCEPTS 63 

Employee I> Dept 

Name Emp_ld Dept_Name 

Sumit 100 Finance 

Raja 102 Finance 

2.4.8.4 Outer join : The full outer join is written as R = X = S where R and S are relations. The 
result of the full outer join is the set of all combinations of tuples in R and S that are equal on their 
common attribute names, in addition to tuple S that have on matching tuples in R and tuples in R that 
have no matching tuples in S in their common attribute names. 

Ex. " Consider the table Employee and Dept and their full outer Join: 
Employee Dept 

Name Emp_ld Dept_Name Dept_Name Manager 

Sumit 100 Finance Sales Vijay 

Sanjay 101 Sales Production Santosh 

Raja 102 Finance 

Sanjeev 103 Sales 

Shally 104 Executive 

Employee = X = Dept 

Name Emp_ld Dept_Name Manager 

Sumit 100 Finance OJ 

Sanjay 101 Sales Vijay 

Raja 102 Finance OJ 

Sanjeev 103 Sales Vijay 

Shally 104 Executive OJ 

OJ OJ Production Santosh 

OJ ~ Null value 

2.4.9 Projection 

A projection is a uniary operation written as .7ra1, az, ... , an (R), where a1> a2, ... , an is the set of 
attribute names. The result of such projection is defined as the set that is obtained when all tuples in 
R are restricted to the set (aI, a2, ... , an). 

Example,' The table employee (E) 

ID Name Salary 

1 Vijay 15000 

5 Santosh 30000 

7 Gopal 25000 



64 DATABASE MANAGEMENT SYSTEMS 

SQL Result Relational Algebra 

Salary 

15000 
Select Salary from E 

30000 3lSalary (E) 

25000 

ID Salary 

1 15000 
Select ID, Salary from E 

5 30000 3lID, Salary (E) 

7 25000 

Selection : The example selection 

SQL Result Relational Algebra 

Select * from E where ID Name Salary 
salary < 30000 1 Vijay 15000 (E) 

7 Gopal 25000 aSalary < 30000 

Select * from E where ID Name Salary 
salary < 30000 and 1 15000 (E) 
Id < 7 

Vijay 
aSalary < 30000 and ID < 7 

2.5 RELATIONAL CALCULUS 

The'relational calculus are non procedural languages that represent the basic power required in 
a relational query language, 

The relational calculus is used in design of commercial query language such as SQL, QBL. 
A query in the tuple relational calculus is expressed as : 

{tIP(t) } 

that is, it is the set of all tuples t such that predicate P is true for t. 
A tuple-relational-calculus formula is build up out of atoms. An atom has one of the following 

forms: 
• S E r, where S is a tuple variable and r is a relation. 
• S [xl e u [Y], where e is a comparison operator and S, u are tuple variables, x is an attribute 

on which S is defined and y is an attribute on which u is defined. 
• S [xl e C, where S is a tuple variable, x is an attribute on which S is defme, e is comparison 

operator and C is a constraint in the domain of attribute x. 
We build up formulae from atoms by using the following rules : 
• An atom is a formula. 
• If PI is a formula, then so are -/ PI and (PI). 
• If PI and Pz are formulae, then '>0 are PI V Pz, PI 1\ P z and PI::;> Pz. 
• If PI (S) is a formula containing a free tuple variable S, and r is a relation, then 

3 S E r (PI (S» and \;f S E r (PI (S» 

'In the tuple relational calculus, these equivalences include the following three rules: 

(1) PI 1\ P2 is equivalent to I ( I (PI) V I (Pz» 
(2) \;f t E r (Pl(t)) is equivalent to -/3t E r (-/ Pl(t» 



RELATIONAL DATA MODEL CONCEPTS 65 

(3) PI :::> P2 is equivalent to , (PI) V P2. 
For example: (1) Find the loan number for each loan of an amount greater than $ 1200. 

{t13 S E loan (t [loan-number] = S [loan-number] 1\ S [amount] > 1200)} 

(2) Find all customers who have a loan, an account or both at the bank. 
{t13 S E borrower (t [customer-name] = S [customer-nameD 

V 3u E depositor (t [customer-name] = u [customer-nameD} 
(3) Find all customers who have an account at the bank but do not have a loan from the bank. 

{t I 3 u E depositor (t [customer-name] = u [customer-nameD 

1\ ,3 s E borrower (t [customer-name] = s [customer-nameD} 

(4) Find the branch-name, loan-number, and amount from loan of over Rs. 12000. 

{t I t E loan 1\ t [amount] > 12000} 

2.6 THE DOMAIN RELATIONAL CALCULUS 

• The domain relational calculus are non procedural language that represent the basic power 
required in a relational query language. 

• The domain relational calculus uses domain variables that take on values from an attributes 
domain. 

Formal Definition : In the domain relational calculus is of the form : 
{(xI,X2, ... ,xn) I P (x2,x20 ... ,xn)} 

where Xl, xl! ... ,xn are domain variables P represents a formula composed of atoms. 
An atom in the domain relational calculus has one of the following forms : 
• <x1,x2,x3, ""Xn > E r, where r is a relation on n attributes and x1,x2, ... ,xn are domain 

variables. 
• x E> y, where x and yare domain variables and E> is a comparison operator. 
• .r E> c, where x is a domain variable, E> is comparison operator and c is a constraint in the 

domain of the attribute for which x is a domain variable. 
We build up formulae from atoms by using the following rules : 
• An atom is a formula. 
• If PI is a formula, then so are, PI and (PI)' 
• If PI and P2 are formulae, then so are PI V P2, PI 1\ P2, and PI :::> P2. 
• If PI (x) is a formula in x, where x is a domain variable, then 

3x (PI (x» and V x (PI (x» 

Examples: 
(1) Find the loan number, branch name, and amount for loans of over Rs. 12,000. 

{<I, b, a> I <I, b, a> E loan 1\ a > 12000} 

(2) Find all loan numbers for loans with an amount greater than Rs. 12000 

{<I> I 3 b, a «I, b, a> E loan 1\ a > 12000)} 

(3) Find the names of all customers who have a loan from the SBI branch and fmd the loan 
amount 

{<c, a> I 31 <c, I> E borrower 1\ 3 b «I, b, a> E loan 1\ b = "SBI")} 



66 DATABASE MANAGEMENT SYSTEMS 

(4) Find the names of all customers who have a loan, an account, or both at the SBI branch. 
{<c> I 31 «c, I> E borrower A 3 b, a «I, b, a> E loan A b = "SBI"» 

V 3 a «c, a> E depositor A 3 b, n «a, b, n> E amount A b = "SBI"»)} 
(5) Find the names of all customers who have an account at all the branches located in New 

Delhi. 

{<c> I 3 n «c, n> E customer) A V x,y,z «x,y,z> E branch A y = "New Delhi") 

~ 3a,b «a,x,b> E account A <c,a> E depositor»)} 

Q. Retrieve the name and address of all employees who work for the 'computer' department. 

Ans. {qsv I (3 z) (3 I) (3 m) (EMPLOYEE (qrstuvwxyz) AND 

DEPARTMENT (1m no) AND I = 'COMPUTER' AND (m = z»} 

2.7 INTRODUCTION TO SQl 
Structured Ouery Language (SOL) is a language that provides an interface to relational database 

systems. 
In common usage SOL also encompasses : 
• DML (Data Manipulation Languages) for INSERTs, UPDATEs, DELETEs 
• DDL (Data Definition Language) used for creating and modifying tables and other database 

structures. 
Features of SQL : 
(1) SOL can be used by a range of users, including those with little or no programming 

expenence. 
(2) It is a non procedural language. 
(3) It reduces the amount of time required for creating and maintaining systems. 
(4) It is an English-Like Language. 
Components of SQL : There are following components of SOL. 

(1) DDL 
It is a set of SOL commands used to create, modify and delete data base structure but not data. 
For examples " 
(i) CREATE: To create objects in the database. 
(ii) ALTER: Alters the structure of the database. 
(iii) DROP: Delete objects from the database. 
(iv) TRUNCATE : Remov~ all records from a table, including all spaces allocated for the records 

are removed. 
(v) COMMENT: Add comments to the data dictionary. 

(2) DML (Data Manipulation Language) 
It is the area of SOL that allows changing data within the database. 
For Examples " 
(i) INSERT : Insert data into a table. 
(ii) UPDATE: Updates existing data within a table. 
(iii) DELETE : Deletes all records from a table, the space for the records remain. 
(iv) LOCK TABLE: Control concurrency. 

(3) DCL (Data Control Language) 
It is the components of SOL statements that control access to data and to the database. 



RELATIONAL DATA MODEL CONCEPTS 

For Examples : 
(i) COMMIT: Save work done 
(ii) SAVE POINT: Identify a point in a transaction to which you can later roll back. 
(iii) ROLL BACK: Restore database to original since the last COMMIT. 
(iv) GRANT/REVOKE: Grant or take back permissions to or from the oracle users. 
(v) SET TRANSACTION: Change transaction options like what rollback segment to use. 

(4) DQL (Data Query Language) 

67 

It is the component of SQL statement that allows getting data from the database and imposing 
ordering upon it. 

For example: 
(1) SELECT: Retrieve data from the database. 

2.7.1 Data Types 
• Data types comes in several forms and sizes, allowing the programmer to create tables suited 

to the scope of the project. 
• CHAR (Size) : This data type is used to store character strings values of fixed length. The 

maximum number of characters this data type can hold is 255 characters. 
e.g., In case of 'Name Char (15)" then data held in the variable Name is only 15 characters in 

length. 
• VARCHAR (Size)NARCHAR2 (size) : This data type is used to store variable length 

alphanumeric data. The maximum type this can hold is 2000 characters. 
• NUMBER (P, S) : The NUMBER data type is used to store numbers. The precision (P), 

determines the maximum length of the data, whereas the scale, (S), dertermines the number 
of places to the right of the decimal. The maximum precision (P), is 38 digits. 

• DATE: This data type is used to represent date and time. The standard format is DD-MM-YY 
as in 26-June-07. 
The Date time stores date in the 24-hour format. By default, the time in a date field is 
12 : 00 : 00 AM, if no time portion is specified. 

• LONG: The LONG data type is used to store variable length character strings containing 
upto 2 GB. 
LONG data can be used to store arrays of binary data in ASCII format. 

• RAW/LONG RAW: The RAW/LONG RAW data types is used to store binary data, such as 
digitized picture or image. 
RAW data type can have a maximum length of 255 bytes. 
LONG RAW data type can contain up to 2 GB. 

• ROWID (rowid) : The format of the rowid is : 

BBBBBBB . RRRR . FFFFF 

where BBBBBBB is the block in the database fIle; 
RRRR is the row in the block; 
FFFFF is the data base fIle. 

• Boolean: Valid in PL/SQL but this data type does not exist in oracle 8 i or oracle 9 i. 

2.7.2 Types of SOL Commands 
(1) The Create table Command: 
Syntax: CREATE TABLE table name 



68 DATABASE MANAGEMENT SYSTEMS 

(Column name datatype (size), column name data type (size), 

column name datatype (size»; 

Example: Create a Employee Table. 

CREATE TABLE Employee (E-ID number (6), 

ENAME char (15), ADDRESS varchar (15), 

CITY char (15), STATE char (15), PIN CODE number (6»; 

Output : Table Created 
(2) Create a Student table 
CREATE TABLE Student (Roll-No number (15), Name char (15), 

Address varchar (15), Sex char (2), City char (15), 

Phone number (15), State char (15»; 

Output : Table Created 

2.7.3 Insertion of Data Into Tables 
Once a table is created, the most natural thing to do is load this table with data to be manipulated 

later. 
Syntax : INSERT INTO table name 

(Column name 1, Column name 2 ... ) 

VALUES (expression, expression); 

Example: 

INSERT INTO Employee (E-ID, ENAME, ADDRESS, CITY, 

STATE, PINCODE) VALUES (115, 'VIJAY', 'C-6 Gupta Road', 

'New Delhi', 'DELHI'); 

Another method: INSERT INTO Employee VALUES 

(& E-ID, '& NAME', '& ADDRESS', '& CITY', '& STATE'); 

Note: 
(i) .The character or varchar expression must be enclosed in single quotes ('). 
(ii) In the insert into SQL statement the columns and values have a one to one relationship. 

2.7.4 Select Command 

Once data has been inserted into a table, the next most logical operation would be to view what 
has been entered. This is achieved by SELECT SQL Verb. 

(i) View global table data the syntax is : 

SELECT * FROM table name; 

e.g., SELECT * FROM Employee; 
(ii) Retrieve ID, name, city of the employee 

SELECT E-ID, ENAME, CITY FROM Employee; 
Selected Columns and Selected Rows : 
WHERE Clause 
Syntax: SELECT * FROM table name 
WHERE search condition; 
e.g., (i) SELECT * FROM Employee WHERE 

E-ID > 112; 



RELATIONAL DATA MODEL CONCEPTS 

(ii) SELECT Roll-No, Name FROM 
Student WHERE Roll No. < = 150; 

2.7.5 Elimination of Duplicates from the Select Statement 

A table could contain duplicate rows. We can eliminate using select statement. 
Syntax: SELECT DISTINCT Column name 1, 

Column name 2 FROM table name; 

Syntax: SELECT DISTINCT * FROM Table name 
Example: (1) Select only unique rows from the table student: 

SELECT DISTINCT * FROM Student; 

2.7.6 Sorting Data in a Table 

69 

Oracle allows data from a table to be viewed in a sorted order. The rows retrieved from the table 
will be sorted in either ascending or descending order depending on the condition specified in the 
select statement. 

Syntax: SELECT * FROM table name ORDER BY Column name 1, Column name 2 [Sort 
order]; . 

Example : Retrieve all rows from student and display this data sorted on the value contained in 
the field Roll-No. in ascending order; 

SELECT * FROM Student ORDER BY Roll-No; 
Note: Oracle engine sorts in ascending order by default. 
Example: For viewing the data in descending sorted order the word desc. 

SELECT * FROM Student ORDER BY Roll-No desc; 

2.7.7 Creating a Table from a Table 
Syntax: CREATE TABLE Table name 

[(Column name, Column name)] 
AS SELECT column name, column name FROM Table name; 
Example: Create a table student 1 from student. 

CREATE TABLE Student 1 
(SRoll-No, SName, Address, Sex, City, Ph.No, State) 

AS SELECT Roll-No, Name, Address, Sex, City, Ph. No., State FROM Student; 

2.7.8 Inserting Data Into a Table from Another Table 
Syntax: INSERT INTO Table name SELECT column name, column name, FROM table name; 
Example : Insert into table student 1 from the table student; 
INSERT INTO student 1 SELECT Roll-No, Name, Address, Sex, City, Ph-No, State FROM 

Student; 

Insertion of a Data Set Into a Table from Another Table 
Syntax : INSERT INTO table name 

SELECT column name, column name FROM table name 

WHERE Column = Expression; 

Example: Insert records into the table student 1 from the table student where the field Roll-No 
contains the value '115'; 



70 DATABASE MANAGEMENT SYSTEMS 

INSERT INTO Student 1 SELECT Roll-No, Name, Address, Sex, City, Ph-No, State FROM 
Student 

WHERE Roll-No = '115'; 

2.7.9 Delete Operations 

The DELETE commands deletes rows from the table that satisfies the condition provided by its 
WHERE clause, and returns the number of records deleted. 

The Verb DELETE in SQL is used to remove rows from table. To remove 
• All the rows from a table. 

OR 

• A select set of rows from a table. 
Removal of All Rows: 
Syntax: DELETE FROM table name; 
Example: (1) Delete all rows from the table student 

DELETE FROM Student; 

Removal of a Specified Rows 
Syntax: DELETE FROM table name WHERE search condition; 
Example: Delete rows from the table student where the Roll-No> 115. 

DELETE FROM student where Roll-No> 115; 

2.7.10 Update Command 

Updating the Contents of a Thble : The UPDATE command is used to change or modify data 
values in a table. 

To update: 
• All the rows from a table. 

OR 
• A select set of rows from a table. 
Updating of All Rows: 
Syntax : UPDATE table name 

SET column name = expression, 
Column name = expression; 

Example: Give every employee a bonus of 10%. Update the values held in the column net-salary. 
UPDATE Employee 

SET Netsal = net-salary + Basic salary * 0.10; 

Updating Records Conditionally: 
Syntax : UPDATE table name 

SET column name = expression, 

column name = expression 

WHERE column name = expression; 

Example: Update the table student change, the contents of the field name to 'Vijay Krishna' and 
the contents of field Address to 'Gr. Noida' for the record identified by the field Roll-No containing 
the value 115; 

UPDATE student 

SET name = .'Vijay Krishna', 



RELATIONAL DATA MODEL CONCEPTS 

Address = 'Gr. Noida' 

WHERE Roll-No = 115; 

2.7.11 Modifying the Structure of Tables 
Adding New Columns : 
Syntax: ALTER TABLE table name 

ADD (New column name data type/size) 
New column name data type (size ... ); 

71 

Example: Add the field Fax which is a field that can hold number upto 15 digits in length and 
Mobile-No, which is a field that can hold a number upto 10 digits in length. 

ALTEff TABLE student 
ADD (Mobile-No number (10), Fax number (15»; 

Modifying Existing Columns : 
Syntax: ALTER TABLE table name 

MODIFY (column name, new data type (New size» 
Example: Modify the field fax of the table student to now hold maximum of 25 character values. 
ALTER TABLE student 

MODIFY (Fax Varchar (25»; 
Limitation of the ALTER TABLE: Using the ALTER TABLE clause the following tasks cannot 

be performed : 
• Change the name of the table. 
• Change the name of the column. 
• Drop a column. 
• Decrease the size of a column if table data exists. 

2.7.12 RENAMING Command 
To rename a table, the syntax is : 
Syntax: RENAME old table name to New table name 
Example: Rename the table Employee to Employee 1; 

RENAME Employee TO Employee 1; 

2.7.13 Destroying Tables 
Syntax: DROP TABLE table name; 
Example: Destroy the table Employee and all the data held in it; DROP TABLE Employee; 
DESCRIBE Command : To find information about the column defmed in the table use the 

following syntax; 
Syntax: DESCRIBE table name; 
This command displays the column names, the data types and the special attributes connected 

to the table. 
Example: Displays the columns and their attributes of the table student. 

DESCRIBE Student; 

2.7.14 Logical Operators 
There are following logical operators used in SQL. 
• The AND Operator: The oracle engine will process all rows in a table and display the result 

only when all of the conditions specified using the AND operator are satisfied. 



72 DATABASE MANAGEMENT SYSTEMS 

Example: Retrieve the contents of the columns product-no, profit-percent, sell-price from the 
table product-master where the values contained in the field profit percent in between 10 and 20. 

SELECT Product-no, profit-percent, sell-price 

FROM Product-master 

WHERE profit-percent> = 10 AND profit-percent < = 20; 

• The OR Operator: The oracle engine will process all rows in a table and diplay the result 
only when any of the conditions specified using the OR operator are satisfied. 

Example: Retrieve the all fields of the table student where the field Roll-No has the value 115 
OR 200; 

SELECT Roll-No, Name, Address, Sex, City, Ph-No, 

State FROM Student WHERE (Roll-No = 115 OR Roll-No = 200); 

• The NOT Operator: The oracle engine will process all rows in a table and diplay the result 
only when none of the conditions specified using the NOT operator are satisfied. 

Example : Retrieve specified student information for the clients, who are NOT in 'New-Delhi'· 
OR 'Noida'; 

SELECT Roll-No, Name, Address, City, State 

FROM Student WHERE NOT 

(City = 'New Delhi' OR City = 'Noida'); 

2.7.15 Range Searching 

BElWEEN Operator: 
Example: Retrieve Roll-No, Name, Address, Ph-No, State from the table student where the 

values contained within the field Roll-No is between 100 and 200 both inclusive. 

SELECT Roll-No, Name, Address, Ph-No, State FROM Student 

WHERE Roll-No BETWEEN 100 AND 200; 

Pattern Matching: 
The use of the LIKE predicate: The LIKE predicate allows for a comparison of one string value 

with another string value, which is not identical. 
For the character data types : 
The percent sign (%) matches any string. 
The underscore (J matches any single character. 
Example: (1) Retrieve all information about students whose names begins with the letters 'vi' 

from student table. 

or'S' 

SELEe'T * FROM Student 

WHERE Name LIKE 'vi %'; 

(2) Retrieve all information about students where the second character of names are either 'V' 

SELECT * FROM Student 

WHERE Name LIKE '_ V%' OR 

Name LIKE '_S%'; 

The IN predicates: In case of value needs to be compared to a list of values then the IN predicate 
is used. 



RELATIONAL DATA MODEL CONCEPTS 73 

Example: Retrieve the Roll-No, Name, Address, City, Ph-No from the table student where name 
is either Vijay or Santosh or Gopal or Sanjay. 

SELECT Roll-No, Name, Address, City, Ph-No 

FROM Student 

WHERE Name IN ('Vijay', 'Santosh', 'Gopal', 'Sanjay'); 

The NOT IN prediates : The NOT IN predicate is the opposite of the IN predicate. This will 
select all the rows where values do not match all of the values in the list. 

Example: 
SELECT Roll-No, Name, Address, City, Ph-No FROM Student 
WHERE Name NOT IN ('Vijay', 'Santosh', 'Gopal', 'Sanjay'); 

2.7.16 UNIQUE KEY Constraint Defined at the Table Level 

Syntax: UNIQUE (column name); 
Example: Create a table student such that the unique key constraint on the column Roll-No is 

described as a table level constraint. 
CREATE TABLE Student 

(Roll-No number (5), Name char (15), Sex char (2), 

Ph-No number (10), Address varchar (15), City char (10), 

State char (15), UNIQUE (Roll-No»; 

2.7.17 PRIMARY KEY Constraint Defined at the Column Level 

Syntax: PRIMARY KEY (column); 
Example: Create a table student such that the primary key constraint on the column Roll-No is 

described as a table level constraint. 
CREATE TABLE Student 

(Roll-No number (5), Name char (15), Sex char (2), 

Ph-No number (10), Address varchar (15), City char (10), 

State char (15), PRIMARY KEY (Roll-No»; 

2.7.18 FOREIGN KEY Constraint Defined at the Table Level 

Syntax: FOREIGN KEY (column name [column nameD 

REFERENCES table name [column name [, column nameD; 

Example: Create table sales-order with primary key as detlorder-no and product-no and foreign 
key at table level as detloder-no referencing column order-no in the sales-order table. 

CREATE TABLE sales-order 
(detlorder-no varchar (6), product no varchar (6), 

qty-order number (7), product-rate number (8, 2), 
PRIMARY KEY (detlorder-no, product-no), 
FOREIGN KEY (detlorder-no) 
REFERENCE sales-order); 

2.7.19 Aggregate Functions 

Aggregac functions are functions that take a collection of values as input and return a single 
value. SOL offers five suit-in aggregate functions. 

• Average: AVe; 



74 

• Minimum: MIN 
• MAXIMUM: MAX 
• Total: SUM 
• Count: COUNT: 
Syntax: COUNT ([DISTINCf/ALL] expr) 

Rcturns the number of rows where 'expr' is not NULL. 

Example: SELECT COUNT (Product-no) "No. of product". 
FROM product-master; 
Output: No. of product = 10 
AVG : Syntax: AVG ([DISTINCT/ALL]n) 
Example: SELECT AVG (sell-price) "Average" 

FROM product-master; 

Average 

Output: (205.137) 

MIN: 
Syntax: MIN ([DISTINCT\ALL] expr) 
Example : SELECT MIN (Bal-due) "Minimum Balance" 

. 
Output: 

MAX: 

FROM client-master; 

Minimum Balance 

3 

Syntax: MAX ([DISTINCT\ALL] expr) 
Example : SELECT MAX (Bal-due) "Maximum" 

Output: 

SUM: 

FROM client-master; 

Maximum 

25000 

Syntax: SUM ([DISTINCT\ALL]n) 
Example: SELECT SUM (Bal-due) "Total Balance Due" 

FROM client-master; 

Output: 'Total Balance Due 

30000 

POWER: 
Syntax: POWER (m, n) 

DATABASE MANAGEMENT SYSTEMS 

Rcturns 'm' raised to 'nth' power 'n' must be an integer, else an error is returned. 
Example : SELECT POWER (3,2) "RESULT =" FROM math; 

Output: RESULT = 9 

ABS: 
Syntax: ABS (n) 
Returns the absolute value of 'n' 
Example: SELECT ABS (-10) "Absolute =" FROM math; 

Output: Absolute = 10 



RELATIONAL DATA MODEL CONCEPTS 

LOWER: 
Syntax: LOWER (char) 
Returns char, with all letter in lowercase 
Example: SELECT LOWER ('VIJAY KRISHNX) "Lower Case" FROM math; 
Output : Lower Case 

Vijay Krishna 
UPPER: 
Syntax : UPPER (char) 
Returns char with all letters forced to upper case 
Example : SELECT UPPER ('Vijay Krishna') "Result" FROM math; 
Output: 

INITCAP: 

Result 

VIJAY KRISHNA 

Syntax : INITCAP (char) 
Returns string with the fIrst letter in upper case 
Example: SELECT INITCAP ('VIJAY KRISHNX) "Result" FROM math; 
Output: 

SQRT: 
Syntax: SORT (n) 

Result 

Vijay Krishna 

Returns square root of 'n'. If n < 0, NULL. SORT returns a real result. 
Example: SELECT SORT (49) "Square root =" 

FROM Math; 
Output : Square Root = 7 
LENGTH: 
Syntax: LENGTH (char) 
Returns the length of char. 
Example :'SELECT LENGTH ('VIJAY') "Length" 

FROM Match; 

Output: Length 

5 
LTRIM : Syntax: LTRIM (char [, set]) 

75 

• Removes character from the left of char with initial characters removed upto the fIrst character 
not in set. 

Example: SELECT LTRIM ('VIJAY', 'V') 
"Result" FROM Math; . 

Output: Result 

IJAY 

RTRIM : Syntax: RTRIM (char, [set]) 
• Returns char, with fInal characters removed after the last character not in the set. 
• Example: SELECT RTRIM ('VIJAYX, W) 

Output: 

"Result" FROM Math; 

Result 

VIJAY 



76 DATABASE MANAGEMENT SYSTEMS 

2.7.20 Subqueries 
A subquery is a form of an SQL statement that appears inside another SQL statement. It is also 

turned as Nested query. The statement containing a subquery is called a parent statement. The parent 
statement uses the rows returned by the subquery. 

It can be used by the following commands: 
• To insert records in a target table. 
• To create tables and insert records in the table created. 
• To update records in a target table. 
• To create view. 
• To provide values for conditions in WHERE, HAVING, IN etc. used with SELECT, UPDATE, 

and DELETE statement. 
Example: Retrieve all orders placed by client named 'VIJAY KRISHNX from the sales-order 

table. 
Table name : sales-order 

Order No Client No 

Al901 BOO4 
Al902 B002 

A1903 B007 

AIY04 BOOS 

Al90S B007 

Table name: client-master 

Client No Name 

BOOI Ashok 

B002 Gopal 

BOO3 Sanjay 

B004 Santosh 

BOOS Rahul 

B006 Vivek 

B007 VIJAY 
KRISHNA 

SELECT * FROM Sales-order 

WHERE client-no = (SELECT client-no 

FROM client-master 

WHERE Name = 'VIJAY KRISHNX); 

Output: 

Order No Client No 

Al903 B007 

Al90S B007 

Order Date 

12-Apr-2007 

l4-Apr-2007 

0J-June-2007 

20-May-2007 

l2-July-2007 

Bal Due 

400 

300 

200 

100 

0 

0 

0 

Order Date 

0J-June-2007 

l2-July-2007 



RELATIONAL DATA MODEL CONCEPTS 77 

2.7.21 Joins 
Joining Multiple Tables (Equi Joins) : Sometimes we require to treat multiple tables as though 

they were a single entity. Then a single SQL sentence can manipulate data from all the tables to achieve 
this, we have to join tables. Tables are joined on columns that have the same data type and data width 
in the table. . 

Example: Retrieve the order numbers, client names and their order dates from the client-master 
and sales-order tables. The order date should be displayed in 'DD/MM/YY' format and sorted in 
ascending order. 

Table name : sales-order 

Order No Client No Order Date 

A1901 B006 12-Apr-2007 

A1902 B002 14-Apr-2007 

A1903 B001 03-June-2007 

A1904 BOOS 20-May-2007 

A1905 B004 12-July-2007 

A1906 BOO1 

Table name: client-master 

Client No Name Bal Due 

B001 Ashok 400 
B002 Gopal 300 
B003 Sanjay 200 
B004 Santosh 100 
BOOS Rahul 0 
B006 Vivek 0 
B007 Vijay Krishna 0 

SELECT order-no, to-char (order-date 'DD/MM/YY;) "Order Date" 
FROM sales-order, client-master 
WHERE client-master. client-no = sales-order. client-no 
ORDER BY to-char (order-date, 'DD/MM/YY); 
Output: 

Order No Name Order Date 

A1903 
A1906 
A1901 
Al904 

A1905 

A1902 



78 DATABASE MANAGEMENT SYSTEMS 

2.7.22 UNION Clause 
The union clause merges the output of two or more queries into a single set of rows and columns. 
Example: Retrieve the names of all the clients and salesman in the city of 'New Delhi' from the 

tables client-master and salesman-master. 
Table name: client-master 

Client No Name 

AOOOl Vijay Krishna 

AOO02 Gopal Krishna 

AOO03 Santosh Kumar 

AOO04 Sanjay Kumar 

A0005 Ajay Kumar 

AOO06 Vishal 

AOO07 Vivek 

Table name: saleiilpan-master 

Salesman_No Name 

B0001 Manish Kumar 

BOO02 Kiran Kumar 

BOO03 Nitin Kumar 

BOO04 Thshar Kumar 

SELECT salesman-no "ID", name 

FROM salesman-master 

WHERE City = 'New Delhi' 
UNION 
SELECT client No "10", Name 

FROM client-master 

WHERE City = 'New Delhi'; 
Output: 

ID 

City 

New Delhi 

Mumbai 

New Delhi 

Calcutta 

Mumbai 

Varanasi 

Noida 

City 

New Delhi 

Mumbai 

New Delhi 

Calcutta 

Name 

AOOOl Vijay Krishna 

AOO03 Santosh Kumar 

BOOOI Manish Kumar 

BOO03 Nitin Kumar 

The Restrictions on using a union are as follows : 
• Number of columns in all the queries should be the same. 
• The datatype of the columns in each query must be same. 
• Unions cannot be used in subqueries. 
• Aggregate functions cannot be used with union clause. 



RELATIONAL DATA MODEL CONCEPTS 79 

2.7.23 Intersect Clause 
The output in an intersect clause will include only those rows that are retrieved by both the 

quenes. 
Example: Retrieve the salesman name in 'New Delhi' whose efforts have resulted into atleast 

one sales transaction. 
Table name: salesman-master 

Salesman No Name City 

AOOOl Vijay Krishna New Delhi 

AOOO2 Santosh Kumar Mumbai 

AOOO3 Gopal Krishna New Delhi 

AOOO4 Sanjay Kumar Noida 

Table name : sales-order 

Order No Order Date Salesman No 

BOOm 12-Apr-2007 AOOOl 

BOOO2 14-Apr-2007 AOOO3 

BOOO3 03-June-2007 AOOOI 

BOOO4 05-June-2007 AOOO4 

BOOO5 02-July-2007 AOOO3 

BOOO6 12-J uly-2007 AOOO2 

SELECT Salesman_No, Name FROM salesman-master WHERE City = 'New Delhi' 
INTERSECT 

SELECT salesman-master.Salesman-No, Name FROM salesman-master, sales-order 

WHERE salesman-master.Salesman-No = sales-order.Salesman-No; 
Output: 

Salesman No 

Note: For the first query. 
SELECT salesman No, Name 
FROM salesman-master, 
WHERE City = 'New Delhi'; 

AOOOl 

AOOO3 

Salesman No 

AOOm 

AOOO3 

Name 

Vijay Krishna 

Gopal Krishna 

Name 

Vijay Krishna 

Gopal Krishna 



80 

For the second query 
SELECT salesman-master.Salesnian No, name 
FROM salesman-master, sales-order 

DATABASE MANAGEMENT SYSTEMS 

WHERE salesman-master.Salesman No = sales-order.Salesman No; 

Salesman No Name 

AOO01 Vijay Krishna 

AOO03 Gopal Krishna 

AOO01 Vijay Krishna 

AOO04 Sanjay Kumar 

AOO03 Gopal Krishna 

AOO02 Santosh Kumar 

2.7.24 MINUS CLAUSE 

The Minus clause outputs the rows produced by the first query, after fIltering the rows retrieve 
by the second query. 

Example: Retrieve all the product numbers of non-moving items from the product-master table. 
Table name : sales-order 

Order_No Product_No 

AOOO1 BOOO1 

AOOO1 BOO04 

AOO01 BOO06 

AOO02 B0002 

A0002 B0005 

A0003 B0003 

AOO04 B0001 

AOO05 B0006 

A0005 BOOO4 

AOO06 BOO06 

Table name: Product-master 

Product No Description 

BOOO1 1.44 Drive 

BOO02 128 MB RAM 

BOO03 Keyboard 

BOO04 Mouse 

BOO05 Monitors 

BOO06 HDD 

BOO07 CD Drive 

BOO08 128 MB RAM 

80009 Monitors 



RELATIONAL DATA MODEL CONCEPTS 

SELECT Product_No FROM product-master 
MINUS 
SELECT Product No FROM sales-order 
Output: Product No 

B0007 
B0008 
B0009 

Note: for the first query 
SELECT Product No FROM Product-master 

For the second query 

A: Product No 

Boo01 

B0002 

B0003 

Boo04 

B0005 

BOOO6 
B0007 

B0008 

B0009 

SELECT Product No FROM sales-order 

Now 

B: Product No 

AooOl 
AOOO4 
AOOO6 
AOOO2 
A0005 
Aoo03 
AOOOl 
A0006 
AOOO4 
AOOO6 

A-B= Product No 

A0007 

A0008 

A0009 

81 



82 DATABASE MANAGEMENT SYSTEMS 

2.8 VIEWS 

An interesting fact about a view is that it is stored only as a definition in Oracle's system 
catalogue. When a reference is made to a view; its definition is scanned, the base table is opened and 
the view created on top of the base table. 

Hence a vjew holds no data at all, until a specific call to the view is made. This reduces redundant 
qata. On the HDD to a very large extent. When a view is used to manipulate table data, the underlying 
base table will be completely invisible. This will give the level of data security required. 

The reasons why views are 
Created are : 
• When Data security is required. 
• When Data redundancy is to be kept to the minimum while maintaining data security. 
• Views can provide logical data independence. 
• Views provide "macro" capability. 
Creation of views : 
Syntax: 

CREATE VIEW View name As 
SELECT column name, column name 
FROM table name 
WHERE column name = expr. List; 
GROUP BY grouping criteria 
HAVING predicate 

Example : (i) Create a view on the salesman-master table for the sales department. 
CREATE VIEW VW-sales AS 
SELECT * FROM Salesman-master; 

(ii) Create a view on the client-master table for the Administration Department 
CREATE VIEW VW-clientadmin AS 
SELECT name, address, city, pin code State FROM client-master; 
Renaming the columns of a view : The columns of the view can take on different names from 

the table columns, if required. 
Example: CREATE VIEW VW-clientadmin AS SELECT name name 1, address address 1, city, 

pin code PIN, state FROM client-master; 

2.9 INDEXES 

Indexing a table is an 'access strategy', that is, a way to sort and search records in the table. 
Indexes are essential to improve the speed with which the records can be located and retrieved from 
a table. 

• Indexing involves forming a two dimensional matrix completely independent of the table on 
which the index is being created. 

• A column, which will hold sorted data, extracted from the table on which the index is being 
created. 

• An address field that identifies the location of the record in the oracle database. This address 
field is called Rowid. 

• When data is inserted in the table the oracle engine inserts the data value in the index. 
For every data value held in the index the oracle engine inserts a unique rowid value. This rowid 

indicates exactly where the record is stored in the table. 



RELATIONAL DATA MODEL CONCEPTS 83 

Hence once the appropriate index data values have been located, the oracle engine locates an 
associated record in the table using the rowid found in the table. 

Address Field in the Index: The address field of an index is called ROWID. 
The ROWID format used by Oracle as follows 

BBBBBBB.RRRR.FFFF 

where FFFF is a unique number given by the oracle engine to each data file. 
For Ex., database can be a collection of data files as follows : 

Data File Name Data File No Size of Data File 

Student-Ora 1 50MB 

Staff-Ora 2 10 MB 

Temporcl-Ora 3 30 MB 

Sysorcl-Ora 4 40 MB 

BBBBBBB : Each data file is further divided into 'Data Block' and each block is given a unique 
number. The unique number assigned to the first data block in a data file o. 

Thus block number can be used to identify the data block in which a record is stored. BBBBBBB 
is the block number in which the record is stored. 

RRRR : Each block can store one or more records. Thus each record in the data block is given 
a unique record number. The unique record number assigned to the first order in each data block is 
O. 

Thus record number can be used to identify a record stored in a block. RRRR is a unique record 
number. 

Creation of Index : An index can be created on one or more column. Based on the number of 
column included in the index. 

An index can be : 
• Simple Index 
• Composite Index 
Simple Index: An index created on a single column of a table is called simple index. 
Syntax: CREATE INDEX index name 

ON table name (column name); 
Example: create a simple index on a Roll-No columns of the student table. 

CREATE INDEX IdX-Roll-No 
ON Student (Roll-No); 

Composite Index: An index created on more than one column is called composite index. 
Syntax: CREATE INDEX index name 

ON table name (column name, column name); 

Example Create a composite index on the sales-order tables on column order-no and 
product-no. 

CREATE INDEX idx-sales-order 
ON sales-order (order-no, product-no) 

2.10 ROW NUM IN SQl STATEMENT 

For each row returned by a query, the ROW NUM pseudo column returns a number indicating 
the order in which oracle engine select the row from a table or set of joined rows. 

First row selected has a ROW NUM of 1; The second has 2 and so on. 



84 DATABASE MANAGEMENT SYSTEMS 

Limitation: ROW NUM can be used to limit the number of rows retrieved. 
Example: Retrieve first 5 rows by using ROW NUM. 
Table name : Student 

Roll No 

001 
002 
003 
004 
005 
006 
007 

008 

SELECT ROW NUM, Roll-No, Name 
FROM student 
WHERE ROW NUM < 6; 
Output: 

RowNum 

1 
2 
3 
4 
5 

Name 

Vijay Krishna 

Gopal Krishna 

Santosh Kumar 

Sanjay Kumar 

Punit Kumar 

Pravin Kumar 

Pankaj Kumar 

Thshar Kumar 

Roll No Name 

001 Vijay Krishna 

002 Gopal Krishna 

003 Santosh Kumar 

004 Sanjay Kumar 

005 Punit Kumar 

2.11 SEQUENCES 

Oracle provides an object called a sequence that can generate numeric values. The value 
generated can have a maximum of 38 digits. 

A sequence can be defined to 
• Generate numbers in ascending or descending. 
• Provide intervals between numbers. 
• Caching of sequence number in memory. 
Creating Sequences : The minimum information required for generating numbers using a 

sequence is. 
• The starting number 
• The maximum number that can be generated by a sequence. 
• The increment value for generating the next number. 
Syntax: 

CREATE SEQUENCE Sequence name 
[INCREMENT BY integer value 
START WITH integer value 
MAX VALUE integer value/ 
/NON MAX VALUE 
MIN VALUl::. mteger value/NON MIN VALUE 



RELATIONAL DATA MODEL CONCEPTS 

CYCLE/NO CYCLE 
CACHE integer value/NO CACHE 
ORDER/NO ORDER] 

2.12 CURSOR 

85 

The Oracle Engine uses a work area for its internal processing in order to execute an SQL 
statement. This work area is called a cursor. 

The data that is stored in the cursor is called the ~ctive Data Set'. 
The size of the cursor in memory is the size required to hold the number of rows in the Active 

Data Set. 
e.g., 

SERVER RAM 

Active Data Set 

11 Vijay 

12 Gopal 

13 Santosh 

14 Sanjay 

Contents of a cursor 

When a user fires a select statement as : 
SELECT EMP No, EName, Job, Salary 
FROM Employee 
WHERE Dept No = 20 

Eng. 

Eng. 

Analyst 

Manager 

20000 

20000 

15000 

15000 

The resultant data set in the cursor opened at server and will be displayed as shown above. 
When a cursor is loaded with multiple rows via a query the oracle engine opens and maintain a 

row pointer. Depending on user requests to view data the row pointer will be relocated within the 
cursor's Active Data Set. 

1)rpes of Cursors : Cursors are classified depending on the circumstances under which they are 
opened. 

These are following types 
• Implicit Cursors 
• Explicit Cursors 
• Implicit Cursors : If the oracle engine for its internal processing has opened a cursor, they 

are known as Implicit cursors. 
That is a cursor which opens oracle engine for its internal processing is called Implicit cursor. 

• Explicit Cursor : A user can also open a cursor for processing data as required. Such user 
defined cursors are known as 'Explicit Cursors'. 

Attributes of Cursor: Both Implicit and Explicit cursors have four attributes. 
(i) % ISOPEN : Returns TRUE if cursor is open, FALSE otherwise. 
(ii) % FOUND: Returns TRUE if record was fetched successfully, FALSE otherwise. 
(iii) % NOT FOUND: Returns TRUE if record was not fetched successfully FALSE otherwise. 
(iv) % ROW COUNT: Returns number of records processed from the cursor. 
Drawbacks of Implicit Cursors : The implicit cursor has the following drawbacks : 
• It is less efficient than an explicit cursor. 
• It is more vulnerable to data errors. 



86 DATABASE MANAGEMENT SYSTEMS 

• It gives you less programmatic control. 
Cursor Declaration: A cursor is defined in the declarative part of a PL/SOL block. This is done 

by naming the cursor and mapping it to a query. When a cursor is declared, the oracle engine is 
informed that a cursor of the said name needs to be opened. The declaration'is only an intimation. 
There is no memory allocation at this point in time. 

CURSOR cursor-name [([Paramater [, Parameter ... 1)] 
[RETURN return-specification] 
IS SELECT-Statement. 
Where Cursor-name: The Name of Cursor 
return-specification : An optional RETURN clause for the cursor. 

SELECT-Statement : Any valid SOL SELECT statement. 
The three commands used to control the cursor subsequently are open, fetch and close. 
Fetch: A Fetch statement moves the data held in the Active Data Set into memory variable. The 

fetch statement is placed inside a loop ... End loop construct, which causes the data to be fetched into 
the memory variables and processed until all the rows in the Active Data Set are processed. 

Syntax: CURSOR cursor name IS SELECT Statement; 
Opening a Cursor: Opening a cursor executes the query and creates the active set that contains 

all rows, which meet the query search criteria. 
An open statement retrieves records from a database table and places the records in the cursor. 
A cursor is opened in the server's memory. 
Syntax: OPEN cursor name; 
Closing A Cursor: The close statement disables the cursor and the active set becomes undefined. 

This will release the memory occupied by the cursor and its Data set both on the client and on the 
server. 

Syntax: CLOSE Cursor Name. 

2.13 DATABASE TRIGGERS 

A trigger consists of PL/SOL code, which defines some action that the database should take when 
some database related event occurs. 

The Oracle Engine allows us to define procedures that are implicitly executed when an insert, 
update or delete statement is issued against the associated table. These types of procedures are called 
data base triggers. 

Use of Database Triggers: These are following 
• A trigger can permit DML statement against a table only if they are issued, during regular 

business hours. 
• A trigger can also be used to keep an audit trait of a table, along with the operation performed 

and the time on which the operation was performed. 
• Enforce complex security authorizations. 
Basic parts of Trigger : A trigger has three basic parts 
• A triggering event or statement 
• A trigger restriction 
• A trigger action 
Triggering Event or Statement: It is a SOL statement that causes a trigger to be fired. It can 

INSERT, UPDATE or DELETE Statement for a specific table. 
Trigger Restriction : A trigger restriction specifies a Boolean expression that must be TRUE for 

the trigger to fire. It is an option available for triggers that are fired for each row. 



RELATIONAL DATA MODEL CONCEPTS 87 

A trigger restriction is specified using a WHEN clause. 
Trigger Action: A trigger action is the PLiSOL code to be executed when a trigerring statement 

is encountered and any trigger restriction evaluates to TRUE. 
JYpes of Triggers : These are following types : 
• Row Triggers : A row trigger is fired each time a row in the table is affected by the triggering 

statement. 
Example: If an UPDATE statement updates multiple rows of a table, a row trigger is fired once 

for each row affected by the UPDATE statement. 
Row triggers should be used when some processing is required whenever a triggering statement 

affects a single row in a table. 
Statement Triggers : A statement trigger is fired once on behalf of the triggering statement, 

independent of the number of rows the triggering statement affects. 

Statement triggers should be used when a triggering statement affects rows in a table but the 
processing required is completely independent of the number of rows affected. 

Before Triggers : BEFORE triggers execute the trigger action before the triggering statement. 
These types of triggers are commonly used in the following situation : 

(i) BEFORE triggers are used when the trigger action should determine whether or not the 
triggering statement should be allowed to complete. 

(ii) BEFORE triggers are used to derive specific column values before completing a triggering 
INSERT or UPDATE statement. 

AFTER Triggers : AFTER triggers executes the trigger action after the triggering statement is 
executed. 

These types of triggers are commonly used in the following situation : 
(i) AFTER triggers are used when you want the triggering statement to complete before 

executing the trigger action. 
(ii) If a BEFORE trigger is already present, an AFTER trigger can perform different actions on 

the same triggering statement. 
Note: When a trigger is ftred, an SOL statement inside the trigger's PLiSOL code block can also 

ftre the same or some other trigger. This is called 'Cascading triggers'. 

Database Triggers Vis Procedures 
There are very few differences between database triggers and procedures 
• Triggers do not accept parameters whereas procedures can. 
• A trigger is executed implicitly by the oracle engine itself upon modiftcation of an associated 

table or its data. To execute a procedure, it has to be explicitly called the user. 
Difference between procedure and function : 
• A function must return only one value back to the caller. While procedure can never return 

a value back to the caller. 

2.14 ORACLE PACKAGES 

A package is an oracle object, which holds other objects within it. Objects commonly held within 
a package are procedures, functions, variables, constants, cursors and exceptions. It is a way of creating 
generic, encapsulated, re-usable code. 



88 DATABASE MANAGEMENT SYSTEMS 

Component of an Oracle Package : A package has usually two components : 
• A specification. 
• A body 
Specification : A packages specification declares the types, memory variable constants. 

exceptions, cursors, and sub programs that are available for use. 
Body: A packages body full dermes cursors, functions, and procedures and thus implements the 

specification. 
Advantages of Packages : These are following advantages : 
(i) Packages enable the organization of commercial applications into efficient modules. 
(ii) Packages allow granting of privileges efficiently. 
(iii) A package's public variables and cursors persist for the duration of the session. Therefore, 

all cursors and procedures that execute in this environment can share them. 
(iv) Packages enable the overloading procedures and functions when required. 
(v) Packages improve performance by loading multiple objects into memory at once. 
(vi) Packages promote code reuse through the use of libraries that contain stored procedures 

and functions, thereby reducing redundant coding. 

2.15 ASSERTIONS 
An assertion is a predicate expressing a condition that we wish the database always to satisfy. 

Domain constraints and referential-integrity constraints are special forms of assertions. They are easily 
tested and apply to a wide range of database application. 

An assertion in SQL takes the form 

CREATE ASSERTION < assertion-name> 

Check < predicate> 

Two examples of such constraints are : 
• The sum of all loan amounts for each branch must be less than the sum of all account balances 

at the branch. 
• Every loan has at least one customer who maintains an account with a minimum balance of 

Rs. 1000.00. 
When an assertion is created, the system tests it for validity. If the assertion is valid, then any 

future modification to the database is allowed only if it does not cause that assertion to be violated. 
Hence, assertions should be used with great care. 



RELATIONAL DATA MODEL CONCEPTS 89 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Solved Problems 

Q.1. What is a features of PL/SQL? 
Ans. Features of PLlSQL : These are following 
(1) PL/SOL accepts ad hoc entry of statements 
(2) It accepts SOL input from files. 
(3) It provides a line editor for modifing SOL statements. 
(4) It controls environmental settings. 
(5) It formats query results into basic reports. 
(6) It accesses local and remove databases. 
Q.2. What is difference between SQL and SQL * PLUS 
Ans. 

SQL SQL*Plus 

SOL is a language for communicating with the SOL *Plus recognize SOL statements and sends 
oracle server and other databases to access data. them to the server. 

SOL is based on ANSI standard SOL. SOL * Plus is the oracle proprietory interface for 
executing SOL statements. 

SOL manipulates data and table definitions in SOL *Plus does not allow manipulation of values 
the database. in the database. 

SOL is entered into the SOL buffer on one or SOL * Plus is entered one line at a time, not 
more lines. stored in the SOL buffer. 

It cannot be abbreviated. It can be abbreviated. 

It uses a termination character to execute It does not require termination characters; 
commands immediately. executes commands immediately. 

It uses functions to perform some formatting It uses commands to format data. 

Q.3. Write the assertion for the following statement. (UPTU 2005.06) 

"Every loan has at least one customer who maintains an account with minimum balance of Rs. 
1000 in banking system. . 

~s. Create assertion balance-constraint check (not exists (select * from loan where not exists 
(select * from borrower, depositor, account 

where loan.loan-number = borrower.loan-number 
and borrower. customer-name = depositor.customer-name 
and depositor. account-number = account.account-number 
and account.balance > = 1000»); 

Q.4. Write the assertion for the following statement. 
"The sum of all loan amounts for each branch must be less than the sum of all account balances 

at the branch." 
Ans. Create assertion sum-constraint check (not exists (select sum (amount) from loan where 
loan.branch-name = branch.branch-name) 

> = (select sum (balance) from account where 
account.branch-name = branch.branch-name»); 



90 DATABASE MANAGEMENT SYSTEMS 

Q.5. Design a relational data base co"esponding to E-R diagram given 

f-----< Owns >------1 

Damage amount 

Ans. The relational database schema is as : 

PERSON (driver_id, Name, address) 

CAR (Licence, model, year) 

ACCIDENT (Report-num, date, location) 

OWNS (driver Jd, licence) 

ParticIpated 

PARTICIPATED (driver_id, report-num, licence, damage-amount) 

EMPLOYEE (person-name, address, city) 

COMPANY (company-name, city) 

Q.6. Consider the following relational database: 

CUSTOMER (customer-name, street, customer city) 
BRANCH (branch-name, assets, branch-city) 
DEPOSIT (branch-name, account-number, customer name, balance) 
Give SQL DDL definition of this data base. 

Ans. CREATE TABLE CUSTOMER 
(Customer-name char (20), street varchar (10), customer city char (15)); 
CREATE TABLE BRANCH 
(Branch-name char (15), Assets varchar (20), Branch-city char (15)); 
CREATE TABLE DEPOSIT 
(Branch-Name char (15), Account-number number (10), 

(UPTU 2006) 

(UPTU 2002, 03) 

Customer-name char (15), Balance number (10)); 



RELATIONAL DATA MODEL CONCEPTS ~1 

Q.7. A university has many department. Each department may have full-time and part time students. 
Each department may float multiple courses for its own students. Each department has staff members 
who may be full time and part time. (VI'TU 2005-06) 

Design a generalization, specialization hierarchy for the university. 

Ans. 

Q.8. Consider the following scheme for PROJECT database 

Project (Project-no, Project-name, Project-manager) 
Employee (Employee-no, Employee-name) 
Assigned to (Project-no, Employee-no) 
Write SQL-DDL statement for PROJECT database 
The SQL statement should clearly indicate the primary key and foreign keys. 

Ans. CREATE TABLE PROJECT 

(Project-no, number (8) PRIMARY KEY, Project-name 

varchar2 (20), Project-manager char (15»; 

• CREATE TABLE EMPLOYEE 

(Employee-no number (6) PRIMARY KEY, Employee-name char (30»; 
• CREATE TABLE ASSIGNED TO 

(Project-no number (8), Employee-no number (6), 

PRIMARY KEY (Project-no, Employee-no), 

FOREIGN KEY (Project-no) 

REFERENCES (Project-1»; 

(UPTU 2003-04) 



92 

Q.9. Draw E-R diagram for banking enterprise. 
Ans. 

Branch-City 

Branch-Name 

DATABASE MANAGEMENT SYSTEMS 

(UPTU 2004, 05) 

Current
Acc 



RElATIONAL DATA MODEL CONCEPTS 93 

Q.I0. (a) Consider the following set of requirements for a bank databases: 
itA large bank has several branches at different places. Each branch maintains the account details 

of the customers. The customers may open join as well as single accounts. The bank also provides loan 
to the customer for different purposes. Bank keeps record of each transaction by the customer to his 
account. All of the branches have employees and some employees are managers". 

Draw an E-R diagram that captures this information. (UPTU 2002, 03) 

Ans. 

Branch-City 

Branch-Name 



94 DATABASE MANAGEMENT SYSTEMS 

(b) Transfonn this E-R diagram to relational database scheme. 
Ans. Customer (customer-id, customer-name, customer-address, customer-city) 
Loan (loan-num, amount) 
Branch (branch-name, branch-city, assets) 
Employee (emp-id, emp-name, ph-no, start-date) 
Account (acc-num, balance) 
Borrower (customer-id, loan-num) 
Loan-branch (branch-name, loan-num) 
Depositor (customer-id, acc-num) 
Joint-ace (name, interest) 
Single-ace (name, interest) 

Examples of Relational Algebra 
Q.l1. Select the employee tuples who's 
(a) DEPT_NO is 10 
(b) SALARY is greater than 80,000 
ADS. (a) 0DEPT NO = 10 (Employee) 
(b) 0SALARY > 80,000 (Employee) 
Q.12. Select tuples for all employees in the EMPLOYEE who either work in DEPT_NO 10 and get 

annual salary of more than INR 80,000 or work in DEPT_NO 12 and get annual salary of more than 
INR 90,000. 

ADS. O(DEPT-NO = 10 AND SALARY> 80,000) OR (Employee) 

(DEPT-NO = 12 AND SALARY> 90,000) 

Q.13. List each employee's identification number (EMPJD), Name, (EMP_NAME) and salary 
(SALARY). 

Ans. HEMP ID, EMP NAME, SALARY (Employee) 
Q.14. Retrieve the name (EMP_NAME) and salary (SALARY) of all employees in the relation 

EMPLOYEE who work in DEPT NO 10. 
Ans. HEMP_NAME, SALARY (oDEPT= 10) (Employee) 

OR EMP-DEPT-lO +- (O(DEPT-NO-IO) (Employee) 

RESULTS +- (HEMP-NAME, SALARY (EMP-DEPT -10» 

Q.15. Retrieve the employees identification number of all employees who either work in DEPT-NO 
10 or directly supervise an employee who work in DEPT-NO = 10. 

Ans. EMP-DEPT +- (oDEPT-NO=lO (Employee» 
RESULTl +- HEMP-ID (Employee) 

RESULT2 (EMP-ID) +- HEMP-SUPERV (EMP-DEP-lO) 
FINAL RESULT +- RESULTl U RESULT2 
Q.16. Retrieve for each female employee (EMP-SEX = 'F') a list of the names of her dependents 

(EMP-DEPENDENT). 
Ans. FEMALE-EMP +- (oEMP-SEX='F' (Employee» 
ALL-EMP +- HEMP-ID, EMP-NAME (FEMALE_EMP) 
DEPENDENTS +- ALL-EMPxEMP-DEPENDENT 
ACTUAL-DEP +- (oEMP-ID=FEPT-ID (DEPENDENTS» 

FINAL-RESULT +- HEMP-NAME, DEPENDENT-NAME (ACTUAL_DEP) 



RELATIONAL DATA MODEL CONCEPTS 95 

Q.17. Retrieve the name of the manager of each department (DEPT). 
Ans. DEPT-MANAGER +- DEPT MANAGER-ID=EMP-ID (Employee) 
FINAL-RESULT +- .nDEPT-NAME,EMP-NAME (DEPT_MANAGER) 

Q.18. Retrieve the name and address of all employees who work for the 'computer' department. 
Ans. COMP-DEP +- O'DNAME='COMPUTER' (Department) 
COMP-EMPS +- (COMP-DEP DNUMBER = DNDEMPLOYEE) 
RESULT +- .nNAME, ADDRESS (COMP _ EMPS) 

Q.19. For every project located in 'New Delhi', list the project numbers, the controlling department 
number and the department manager's last name, address and birth data. 

10. 

Ans. DELHI-PROJS +- O'PLOCATION='NEW DELHI' (Project) 
CONTR-DEPT +- (DELHI-PROJS DNUM=DNUMBER (Department» 
PROJ-DEPT-MGR +- (CONTRO-DEPT MGRSSN=SSN (Employee» 

RESULT +- C .npNUMBER, DNUM, LNAME, ADDRESS, BDATE (PROJ _DEPT _ MGR) 

Q.20. Find the name of employees who work on all the projects controlled by department number 

Ans. DEPT-PROJS (PNO) +- .npNUMBER (O'DNUM=10 (Project» 

EMP-PROJ (SSN, PNO) +- .nESSN PNO (Work-On) , 

RESULT-EMP-SSN +- EMP-PROJ + DEPT-PROJS 

RESULT +- .nNAME (RESULT-MP-SSNS*EMPLOYEE) 

Q.21. Retrieve the names of employees who have no dependents. 

Ans. ALL-EMPS +- .nSSN (Employee) 

EMP-WITH-DEPS (SSN) +- .nESSN (Dependent) 

EMP-WITHOUT-DEPS +- (ALL-EMPS-EMP-WITH-DEPS) 

RESULT +- .nNAME (EMPS-WITHOUT-DEPS*EMPLOYEE) 

Q.22. List the name of managers who have at least one dependent. 

Ans. MGRS (SSN) +- .nMGRSSN (Department) 

EMPS-WITH-DEPS (SSN) +- .nESSN (Dependent) 

MGRS-WITH-DEPS +- (MGRS n EMPS-WITH-DEPS) 

RESULT +- .nNAME (MGRS-WITH-DEPS*EMPLOYEE) 

Q.23. Explain the following tenns briefly : Attribute, domain, entity, relationship,. entity set, 
relationship set, one-to-many relationship, many-to-many relationship, participation constraint, overlap 
constraint, weak entity set, agreegation, and role indicator. 

Ans. Term explanations : 
• Attribute - a property or description of an entity. A toy department employee entity could have 

attributes describing the employee's name, salary, and years of service. 
• Domain - a set of possible values for an attribute. 
• Entity - an object in the real world that is distinguishable from other objects such as the green 

dragon toy. 



96 DATABASE MANAGEMENT SYSTEMS 

• Relationship - an association among two or more entities. 
• Entity set - a collection of similar entitites such as all of the toys in the toy department. 
• Relationship set - a collectioin of similar relationships. 
• one-to-many relationship - a key constraint that indicates that one entity can be associated 

with many of another entity. An example of a one-to-many relationship is when an employee 
can work for only one department, and a department can have many employees. 

• Many-to-many relationship - a key constraint that indicates that many of one entity can be 
associated with many of another entity. An example of a many-to-many relationship is 
employees and their hobbies : a person can have many different hobbies, and many people 
can have the same hobby. 

• Participation constraint - a participation constraint determines whether relationship must 
involve certain entities. An example is if every department entity has a manager entity. 
Participation constraints can either be total or partial. A total participation constraint says that 
every department has a manager. A partial participation constraint says that every employee 
does not have to be a manager. 

• Overlap constraint - within an ISA hierarchy, an overlap constraint determines whether or not 
two subclasses can contain the same entity. 

• Covering constraint - within an ISA hierarchy, a covering constraint determines where the 
entities in the subclasses collectively include all entities in the superclass. For example, with 
an Employees entity set with subclasses HourlyEmployee and SalaryEmployee, does every 
Employee entity necessarily have to be within HourlyEmployee or SalaryEmployee? 

• Weak entity set - an entity that cannot be identified uniquely without considering some primary 
key attributes of another identifying owner entity. An example is including Dependent 
information for employees for insurance purposes. 

• Aggregation - a feature of the entity relationship model that a,llows a relationship set to 
participate in another relationship set. This is indicated on an ER diagram by drawing a 
dashed box around the aggregation. 

• Role indicator - If an entity set plays more than one role, ·role indicators describe the different 
purpose in the relationship. An example is a single Employee entity set with a relation 
Reports-To that relates supervisors and subordinates. 

Q. 24. Consider the following infonnation about a university database: 
Ans. 
• Professors have an SSN, a name, an age, a rank, and a research specialty. 
• Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending date, 

and a budget. 
• Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or Ph. D.). 
• Each project is managed by one professor (known as the project's principal investigator). 

• Each project is worked on by one or more professors (known as the project's co-investigators). 

• Professors can manage and/or work on multiple projects. 
• Each project is worked on by one or more graduate sutdents (known as the project's research 

assistants) . 

• When graduate students work on a project, a professor must supervise their work on the 
project. Graduate students can work on multiple projects, in which case they will have a 
(potentially different) supervisor for each one. 



RELATIONAL DATA MODEL CONCEPTS 97 

• Departments have a department number, a department name, and a main office. 
• Departments have a professor (known as the chairman) who runs the department. 
• Professors work in tone or more departments, and for each department that they work in, a 

time percentage is associated with their job. 
• Graduate students have one major department in which they are working on their degree. 

------------------------------------------------------------, 

Fig. ER Diagram 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



98 DATABASE MANAGEMENT SYSTEMS 

• Each graduate student have another, more senior graduate student (known as a student 
advisor) who advises him or her on what courses to take. 

Design and draw an ER diagram that captures the information about the university. Use only the 
basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate any key and 
participation constraints. 

Q. 25. Notown Records has decided to store information about musicians who perform on its albums 
(as well as other company data) in a database. The company has wisely chosen to hire you as a database 
designer (at your usual consulting fee of $2500/day). 

• Each musician that records at Notown has an SSN, a name, an address, and a phone number. 
Poorly paid musicians often share the same address, and no address has more than one 
phone. 

• Each instrument used in songs recorded at Notown has a unique identification number, a name 
(e.g., guitar, synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat). 

• Each album recorded on the Notown label has a unique identification number, a title, a copyright 
data, a format (e.g., CD or MC), and an album identifier. 

• Each song recorded at Notown has a title and an author. 

• Each musician may play several instruments, and a given instrument may be played by several 
musicians. 

• Each album has a number of songs on it, but no song may appear on more than one album. 

• Each songs is performed by one or more musicians, and a musician may perform a number of 
songs. 

• Each album has exactly one musician who acts as its producer. A musician may produce several 
alumbs, of course. 

Ans. 
Design a conceptual schema for Notown and -draw an ER diagram for your schema. The 

preceding information describes the situation that the Notown database must model. Be sure to 
indicate all key and cardinality constraints and any assumptions you make. Identify any contrainst you 
are unable to capture in the ER diagram and briefly explain why you could not express them. 



RELATIONAL DATA MODEL CONCEPTS 

,-------------------------------------
I 
I 
I 

Fig. ER diagram 

99 



100 DATABASE MANAGEMENT SYSTEMS 

Q.26. The prescriptions-R-X chain of pharmacies has offered to give you a free lifetime supply of 
medicine if you design its database. Given the rising cost of health care, you agree. Here's the information 
that you gather : 

• Patients are identified by an SSN, and their names, addresses, and ages must be recorded. 
• Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience 

must be recorded. 
• Each pharmaceutical company is identified by name and has a phone number. 
• For each drugs, the trade name and formula must be recorded. Each drug is sold by a given 

pharmaceutical company, and the trade name identifies a drug uniquely from among the 
products of that company. If a pharmaceutical company is deleted, you need not keep track 
of its products any longer. 

• Each pharmacy has a name, address, and phone number. 
• Every patient has a primary physician. Every doctor has at least one patient. 
• Each pharmacy sells several drugs and has a price for each. A drug could be sold at serveral 

pharmacies, and the price could vary from one pharmacy to another. 

• Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several 
patients, and a patient could obtain prescriptions from several doctors. Each prescription has 
a date and a quantity associated with it. You can assume that, if a doctor prescribes the 
same drug for the same patient more than once, only the last such prescription needs to be 
stored. 

• Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical 
company can contract \,ith several pharmacies, and a pharmacy can contract with several 
pharmaceutical companies. For each contract, you have to store a start date, an end date, and 
the text of the contract. 

• Pharmacies appoint a supervisor for each contract. There must always be a supervisor for each 
contract, but the contract supervisor can change over the lifetime of the contract. 

1. Draw an ER diagram that captures the preceding information. Identify any constraints not 
captured by the ER diagram. 

2. How would your design change jf each drug must be sold at a fixed price by all pharmacies? 

3. How would your design change if the design requirements change as follows : if a doctor 
prescribes the same drug for the same patient more than once, several such prescriptions 
may have to be stored. 



RELATIONAL DATA MODEL CONCEPTS 101 

Ans. 

Fig. DR diagram 

Q. 27. Suppose that we have a ternary relationship R between entity sets A, Band C such that A 
has a key constraint and total participation and B has a key constraint; these are the only constraints. A 
has attributes a1 and a2, with a1 being the key; Band C are similar. R has no d£scriptive attributes. Write 
SQL statement that create tables co"esponding to this infonnation so as to capture as many of the 
constraints as possible. If you cannot capture some constraint, explain why ? 



102 DATABASE MANAGEMENT SYSTEMS 

Ans. The following SOL statements create the corresponding relations. 

CREATE TABLE A (al CHAR (10), 

CREATE TABLE B 

CREATE TABLE C 

a2 CHAR(IO), 
bi CHAR(lO), 

c1 CHAR(lO), 
PRIMARY KEY (al), 

UNIOUE (bl), 
FOREIGN KEY (bl) REFERENCES B, 

FOREIGN KEY (cl) REFERENCES C); 

( bl CHAR(IO), 

b2 CAHR(lO), 

PRIMARY KEY (bl»; 

( bl CHAR(lO), 

c2 CHAR(lO), 

PRIMARY KEY (cl»; 

The first SOL statement folds the relationship R into table A and thereby guarantees the 
participation constraint. 

Q.28. Consider the university database from Quest 24 and the ER diagram you designed. Write SQL 
statements to create the corresponding relations and capture as many of the constraints as possible. If you 
cannot capture some constraints, explain why ? 

Answer. The following SOL statements create the corresponding relations. 

1. CREATE TABLE Professors ( 

2. CREATE TABLE Depts ( 

3. CREATE TABLE Runs ( 

prof_ssn CHAR(lO), 

name CHAR(64), 

age NUMBER(5), 

rank NUMBER(5), 

speciality CHAR (64) , 

PRIMARY KEY (prof_ssn»; 

dno NUMBER(5), 
dname CHAR(64), 

office CHAR(lO), 

PRIMARY KEY (dno»; 

dno NUMBER(5), 

proCssn CHAR(lO), 

PRIMARY KEY (dno, proCssn), 



RELATIONAL DATA MODEL CONCEPTS 

4. CREATE TABLE Work_Dept ( 

103 

FOREIGN KEY (proCssn) REFERENCES 

Professors, 

FOREIGN KEY (dno) REFERENCES Depts); 

dno NUMBER(5), 

proCssn CHAR(lO), 

pc_time NUMBER(6), 

PRIMARY KEY (dno, proC ssn), 

FOREIGN KEY (prof_ssn) REFERENCES 

Professors, 
FOREIGN KEY (dno) REFERENCES Depts); 

Observe that we would need check constraints or assertions in SQL to enforce the rule that 
Professors work in at least one department. 

5. CREATE TABLE Project ( pid NUMBER(5), 

sponsor CHAR (32), 

start_date DATE, 

budget NUMBER(8, 4), 

PRIMARY KEY (pid)) 

6. CREATE TABLE Graduates ( grad_ssn CHAR(lO), 

age NUMBER(5), 

name CHAR(64), 

deg_prog CHAR(32), 

major NUMBER(lO), 

PRIMARY KEY (grad_ssn), 

FOREIGN KEY (major) REFERENCES Depts); 

Note that the Major table is not necessary since each Graduate has only one major and so this 
can be an attribute in the Graduates table. 

7. CREATE TABLE Advisor ( senior_ssn CHAR(lO), 

grad_ssn CHAR(lO), 

PRIMARY KEY (senior_ssn, grad_ssn), 

FOREIGN KEY (senior_ssn) 
REFERENCES Graduates (grad_ssn), 

FOREIGN KEY (grad_ssn) REFERENCES 

Graduates); 



104 DATABASE MANAGEMENT SYSTEMS 

8. CREATE TABLE Manages ( pid INTEGER, 

protssn CHAR(lO), 

PRIMARY KEY (pid, protssn), 

FOREIGN KEY (prof_ssn) REFERENCES 

Professors, 

FOREIGN KEY (pid) REFERENCES Projects) 

9. CREATE TABLE Work_In ( pid INTEGER, 

protssn CHAR(lO), 

PRIMARY KEY (pid, prof_ssn), 

FOREIGN KEY (protssn) REFERENCES 

Professors, 

FOREIGN KEY (pid) REFERENCES Profjects) 

Observes that we cannot enforce the participation constraint for Projects in the Work_In table 
without check constraints or assertions in SOL. 

10. CREATE TABLE Supervises ( protssn CHAR(lO), 

grad_ssn CHAR(lO), 

pid INTEGER, 

PRIMARY KEY (protssn, grad_ssn, pid), 

FOREIGN KEY (prof_ssn) REFERENCES 

Proffessors, 

FOREIGN KEY (grad _ ssn) REFERENCES 

Graduates, 

FOREIGN KEY (pid) REFERENCES Projects) 

Note that we do not need an explicit table for the Work_Proj relation since every time a Graduate 
works on a Project, he or she must have a Supervisor. 

Q.29. Consider the Notown database from Ouest 25. You have decided to recommend that 
Notown use a relational database system to store company data. Show the SOL statements for creating 
relations corresponding to the entity sets and relationship sets in your design. Identify any constraints 
in the ER diagram that you are unable to capture in the SOL statements and briefly explain why you 
could not express them. 

Ans. The following SOL statements create the corresponding relations. 

1. CREATE TABLE Musicians ( ssn CHAR(lO), 

name CHAR(30), 

PRIMARY KEY (ssn»; 



RELATIONAL DATA MODEL CONCEPTS 

2. CREATE TABLE Instruments ( 

3. CREATE TABLE Plays ( 

instrId CHAR(lO), 

dname CHAR(30), 

key CHAR(S), 

PRIMARY KEY (instrId»; 

ssn CHAR(lO), 
instrId NUMBER(S), 
PRIMARY KEY (ssn, instrId), 

105 

FOREIGN KEY (ssn) REFERENCES Musicians, 
FOREIGN KEY (instrId) REFERENCES 

4. CREATE TABLE Songs_Appears ( songId NUMBER(8), 

author CHAR(30), 

title CHAR (30) , 

Instruments) ; 

albumIdentifier NUMBER(lO) NOT NULL, 
PRIMARY KEY (songId), 

FOREIGN KEY (albumIdentifier) 

References Album_Producer); 

S. CREATE TABLE Telephone_Home ( Phone CHAR(ll), 
address VARCHAR(30), 
PRIMARY KEY (phone), 

6. CREATE TABLE Lives ( 

7. CREATE TABLE Place ( 

8. CREATE TABLE Perform ( 

FOREIGN KEY (address) REFERENCES Place); 

ssn CHAR(lO), 

phone NUMBER(ll), 

address VARCHAR(30), 
PRIMARY KEY (ssn, address), 

FOREIGN KEY (phone, address) 
References Telephone_Home, 

FOREIGN KEY (ssn) REFERENCES Musicians); 

address VARCHAR(30»; 

songId NUMBER(8), 

ssn CHAR(lO), 
PRIMARY KEY (ssn, songId), 



106 DATABASE MANAGEMENT SYSTEMS 

FOREIGN KEY (songId) REFERENCES Songs, 

FOREIGN KEY (ssn) REFERENCES Musicians); 

9. CREATE TABLE Album_producer ( albumIdentifier NUMBER(8), 

ssn CHAR(lO), 

copyrightDate DATE, 

speed NUMBER(5), 

title CHAR(30), 

PRIMARY KEY (albumIdentifier), 

FOREIGN KEY (ssn) references Musicians); 

Q.3O. Consider the ER diagram that you designed for the Prescriptions-R-X chain of pharmacies 
in Quest 26. Define relations corresponding to the entity sets and relationship sets in your design using 
SQL. 

Ans. The statements to create tables corresponding to entity sets Doctor, Pharmacy, and 
Pharm _co are straightforward and omitted. The other required tables can be created as follows: 

1. CREATE TABLE Pri_Phy_Patient (ssn CHAR(ll), 
, name CHAR(20), 

2. CREATE TABLE prescription ( 

3. CREATE TABLE Make_Drug ( 

age NUMBER(5), 

address VARCHAR(~O), 

phy_ssn CHAR(ll), 

PRIMARY KEY (ssn), 

FOREIGN KEY (phy_ssn) REFERENCES 

Doctor); 

ssn CHAR(ll), 

phy_ssn CHAR(ll), 
date CHAR(ll), 

quantity NUMBER(5), 
trage _name CHAR (20) , 

pharm _id CHAR(ll), 

PRIMARY KEY (ssn, phy_ssn), 

FOREIGN KEY (phy_ssn) REFERENCES Doctor, 

FOREIGN KEY (trade_name, pharm_id) 

References Make_Drug) 

trade_name CHAR (20) , 

pharm_id CHAR(ll), 
PRIMARY KEY (trade_name, pharm_id), 



RELATIONAL DATA MODEL CONCEPTS 107 

FOREIGN KEY (trade_name) 

REFERENCES Drug, 

FOREIGN KEY (pharm_id) REFERENCES 

Pharm_co); 
4. CREATE TABLE Sell ( price NUMBER(8), 

name CHAR(lO), 

trade_mime CHAR(lO), 
• 

PRIMARY KEY (name, trade_name), 

FOREIGN KEY (name) REFERENCES Pharmacy, 

FOREIGN KEY (trade_name) REFERENCES 

5. CREATE TABLE Contract ( name CHAR(20), 

pharm _id CHAR(l1), 

start_date CHAR(ll), 

end_date CHAR(ll), 

text CHAR(10000), 

supervisor CHAR(20), 

PRIMARY KEY (name, pharm _id), 

FOREIGN KEY (name) REFERENCES 

Drug); 

Pharmacy, 

FOREIGN KEY (pharm Jd) REFERENCES 

Pharm_co) 
Q.31. Briefly answer the following questions based on this schema: 

Emp(eid : integer, ename : string, age: integer, salary: real) 

works (eid : integer, did: integer, pet_time: integer) 

Dept (did: integer, budget: real, managerial: integer) 

1. Suppose you have a view SeniorEmp definedas follows: 

CREATE VIEW SeniorEmp (sname, sage, salary) 

AS SELECT E.ename, E.age, E.salary 

FROM Emp E 

WHERE E.age > 50; 

Explain what the system will do to process the following query : 

SELECT S.snamc 

FROM SeniroEmp S 

WHERE S.salary > 100,000; 



108 DATABASE MANAGEMENT SYSTEMS 

2. Give an example of a view on Emp that could be automatically updated by updating Emp. 
3. Give an example of a view on Emp that would be impossible to update (automatically) and 

explain why your example presents the update problem that it does. 
Ans. The answer to each questions is given below. 
1. The system will do the following : 

SELECT S.name 

FROM (SELECT E.ename AS name, E.age, E.salary 

FROM Emp E 

WHERE E.age > 50) AS S 

WHERE S.salary > 100000; 

2. The following view on Emp can be updated automatically by updating Emp: 

CREATE VIEW SeniorEmp (eid, name, age, salary) 

AS SELECT E.eid, E.ename, E.age, E.salary 

FROM Emp E 

WHERE E.age > 50; 

3. The following view cannot be updated automatically because it is not clear which employee 
records will be affected by a given update : 

CREATE VIEW AvgSalaryBy Age (age, avgSalary) 

AS SELECT E.eid, AVG (E.salary) 

FROM EmpE 

GROUP BY E.age; 

Q. 32. Explain the statement that relational algebra operators can be composed. U'hy is the ability 
to compose operators important? 

Ans. Every operator in relational algebra accepts one or mOl I 'lation instances as arguments 
and the result is always an relation instance. So, the argument of one operator could be the result of 
another operator. This is important because, this makes it easy to write complex queries by simply 
composing the relational algebra operators. 

Q. 33. Consider the following schema : 

Suppliers (sid: integer, sname : string, address: string) 

Parts (pid : integer, pname : string, color: string) 

Catalog (sid: integer, pid : integer, cost: real) 

The key fields are underlined, and the domain of each field is listed after the field name. 
Therefore sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form the key 
for Catalog. The Catalog relation lists the prices charged for parts by suppliers. Write the following 
queries in relational algebra, tuple relational calculus, and domain relational calculus : 



REUI TIONAL DATA MODEL CONCEPTS 109 

I. Find the names of suppliers who supply some red part. 
2. Find the sids of suppliers who supply some red or green part. 
3. Find the sids of suppliers who supply some red part or are at 221 Packet Street. 
4. Find the sids of suppliers who supply some red part and some green part. 
5. Find the sids of suppliers who supply every part. 
6. Find the sids of suppliers who supply every red part. 
7. Find the sids of suppliers who supply every red or green part. 
8. Find the sids of suppliers who supply every red part or supply every green part. 
9. Find paris of sids such that the supplier with the first sid charges more for some part than 

the supplier with the second sid. 
10. Find the pids of parts supplied by at least two different suppliers. 
11. Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham. 
12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier either 

does not supply the part or charges more than $200 for it, the part is not selected.) 
Ans. In the answers below RA refers to Relational Algebra, TRC refers to Tuple Relational 

Calculus and DRC refers to Domain Relational Calculus. 

1. • RA 

nsname (nsid «nptdacolor = 'red' Parts) ~~J Catalog) [,;<1 Suppliers) 

• TRC 
{T I 3Tl E Suppliers (3X E Parts (X.color = 'red' A. 3Y E Catalog 

(Y.pid = X .pid A. Y sid = Tlsid» A. T sname = Tlsname)} 

• DRC 
{<Y> I (X,Y,Z) ESuppliers A 3P,Q,R«P,Q,R) EParts A. 

R = 'red' A 31,1, K( (1,1, K) E Catalog A. J = P A. 1 = X»)} 

• SQL 
SELE(" .. ~name 

FR(; • Suppliers S, Parts P, Catalog C 

WHERE P.color = 'red' AND C.pid = P.pid AND C.sid = S.sids; 

nstd (npid (acol or = 'red' V color = 'green' Parts) i> J catalog) 

• TRC 

{T I 3Tl E Catalog (3X E Parts «X.color = 'red' V X.color = 'green') 

A. X .pid = Tl.pid) A. T sid = Tlsid)} 



110 DATABASE MANAGEMENT SYSTEMS 

• DRC 
{(X) 1 (X, Y, Z) E Catalog A 3A, B, C «A, B, C) E Parts 

A (C = 'red' V C = 'green') A A = Y)} 

• SQL 

3 .• RA 

SELECT C.sid 

FROM Catalog C, Parts P 

WHERE (P.color = 'red' OR P.Color = 'green') 

AND P.pid = C.pid; 

P (R1, .1tsid «.1tpid 0coior = 'red' Parts) 1><] Catalog» 

p (R2, .1tsid 0address = '221 Packer Street' Suppliers) 

R1 UR2; 

• TRC 
{T 1 3Tl E Catalog (3X E Parts (X.color = 'red' A X.pid = Tl.pid) 

A T .sid = Tl.sid) 

V 3 T2 E Suppliers (T2.address = '21 PackerStreet' A T .sid = T2.sid)} 

• DRC 
{(X) 1 (X, Y, Z)E Catalog A 3A, B, C(A, B, C) E Parts 

A C = 'red' A A = Y) 

V3P.Q«X, P, Q)E suppliers A Q = '221 PackerStreet')} 

• SQL 
SELECT S.sid 

FROM Suppliers S 

WHERE S.address = '221 Packer street' 

OR S.sid IN (SELECT C.sid 

FROM Parts P, Catalog C 

WHERE P.color = 'red' AND P.pid = C.pid); 

4 .• RA 
I I 

peRl, .1t~ld «.1t p1d 0color = 'red' Parts) I j Catalog» 

p (Rs2, Jrs1d «Jrpid 0color = 'green' Parts) [. I Catalog» 

RI nR2 



RELATIONAL DATA M0DEL CONCEPTS 

• TRC 
{ A 312 E Catalog (3X E Parts (Y.eolor = 'green' A Y.pid = 12.pid) 

A 12sid = Tlsid) A T sid = Tlsid)} 

• DRC 
{(x) I (.X, Y, Z) E Catalog A 3A, B, C({A, B, C) E Parts 

A C = 'red' A A = Y) 

A 3P, Q,R«P, Q,R) E Catalog A 3E,F, G«E,F, G)E Parts 

AG = 'green' AE = Q) A P =X)} 

• SQL 
SELECT C.sid 

FROM Parts P, Catalog C 

WHERE P.color = 'red' AND P.pid = C.pid 

AND EXISTS (SELECT P2.pid 

FROM Parts P2, Catalog C2 

111 

WHERE P2.color = 'green' AND C2.sid = C.sid 

AND P2.pid = C2.pid); 

5 .• RA 

(nsid, pid Catalog) / (npid Parts) 

• TRC 
{T I 3Tl E Catalog (V X E Parts (312 E Catalog 

(12.pid = X .pid A 12sid = Tlsid» A T sid = Tlsid)} 

• DRC 
{(x) I (X, Y, Z) E Catalog A V (A, B, C) E !arts 

(3(P, Q R) E Catalog (Q = A A P = X»} 

• SQL 
SELECT C.si·d 

FROM Catalog C 

WHERE NOT EXISTS (SELECT P.pid 

FROM Parts P 

WHERE NOT EXISTS (SELECT Cl.sid 

FROM Catalog Cl 

WHERE C1.~id = C.~id 

AND C1.pid = p.pid»; 



112 DATABASE MANAGEMENT SYSTEMS 

6 .• RA 

(.1tsd,pid Catalog) / (.1tpid O'color='red' Parts) 

• TRC 
{T I 3Tl E Catalog 01 X E Parts (X.color ~ 'red' 

v3Tl E Catalog (Tl.pid = X.pid A Tl.sid = Tl. sid» 

A ~ .sid = Tl.sid)} 

• DRC 
{(X) I (X, Y, Z) E Catalog A V (A, B, C) E Parts 

(C ~ 'red' V 3(P Q, R) E Catalog (Q = A A P = X»} 

• SQL 

7 .• RA 

SELECT C.sid 

FROM Catalog C 

WHERE NOT EXISTS (SELECT P.pid 

FROM Parts P 

WHERE P.color = 'red' 

AND (NOT EXISTS (SELECT C1.sid 

FROM Catalog Cl 

WHERE C1.sid = C.sid AND 

C1.pid = p.pid»)j 

(.1tsid,pid Catalog) / (.1tpid O'color='r'red'Vcolor='green,Parts) 

• TRC 
{T I 3Tl E Catalog 01 XE Parts «X.color ~ 'red' 

A X.color ~ 'green') V 312 E Catalog 

(Tl.pid = X.pid A Tl.sid = Tl.sid» A T .sid = Tl.sid)} 

• DRC 
{(X) I (X, Y, Z) E Catalog A V (A, B, C) E Parts 

«C ~ 'red' A C ~ 'green') A 3(P, Q, R) E Catalog 

(Q =A A P =X»} 

• SQL 
SELECT C.sid 

FROM Catalog C 



RELATIONAL DATA MODEL CONCEPTS 

8 .• RA 

WHERE NOT EXISTS (SELECT P.pid 

FROM Parts P 

WHERE (P.color = 'red' OR P.color = 'green' ) 

AND (NOT EXISTS (SELECT C1.sid 

FROM Catalog CI 

WHERE C1.sid = C.sio AND 

C1.pid = P.pid») 

peRl, «ns1d,pid Catalog) / (npid Gcolor = "red' Parts») 

p(R2, «nsid,pid Catalog) /(npid Gcolor='green' Parts») 

RI UR2 

• TRC 
{T I 3TI E Catalog «V X E Parts 

(X .. color "# 'red' V 3Y E Catalog (Y.pid = X .pid A Y.sid = TI.sid» 

vVZ E Parts (z.color"# 'green' V 3P E Catalog 

(P .pid = Z.pid A P .sid = TI.sid») A T .sid = TI.sid)} 

• DRC 
{(x) I (X, Y, Z) E Catalog A (V (,4, B, C) E Partrs 

(C"# 'red' V 3(P, Q, R) E catalog (Q = A A P = X» 
VV(U, V, W) E Parts (W"# 'green' V (M, N, L) E Catalog 

(N = U A M = X»)} 

• SQL 
SELECT C.sid 

FROM Catalog C 

WHERE (NOT EXISTS (SELECT P.pid 

FROM Parts P 

WHERE P.color = 'red' AND 

(NOT EXISTS (SELECT (C1.sid 

FROM Catalog CI 
WHERE C1.sid = C.sid AND 

OR C1.pid = P.pid»))) 

(NOT EXISTS (SELECTE P1.pid 
FROM parts.PI WHERE P1.color = 'green' 

AND (NOT EXISTS (SELECT C2.sid 

113 



114 DATABASE MANAGEMENT SYSTEMS 

FROM C2.sid = C.sid AND 

C2.pid = PI)))); 

9 .• RA 

peRl, Catalog) 

p(R2, Catalog) 

JrRl.Sld, R2.S1d (ORl.pid = R2.pid A Rl.sid '" R2.sid A Rl.cost > R2.cost (RI X R2»; 

• TRC 
{T I 3Tl E Catalog (312 E Catalog 

• DRC 

(12.pid = Tl.pid A 12.sid:;t; Tl.sid 

A 12.cost < Tl.cost A T .sid2 = 12.sid) 

AT .sidl ='Tl.sid)} 

{(X, P) I (X, Y, Z) E Catalog A 3P, Q, R 

«P, Q, R) E Catalog A Q = yAp :;t; X A R < Z)} 

• SQL 
SELECT Cl.sid, C2.sid 

FROM Catalog Cl, Catalog C~ 

WHERE C1.pid = C2.pid AND C1.sid :;t; C2.sid 

AND c1.cost > C2.cost; 

10 .• RA 

peRl, catalog) 

p(R2, Catalog) 

JrRl.pid 0Rl.pid = R2.pid A Rl.sid '" R2.sid (RI X R2) 

• TRC 
{T I 3Tl E Catalog (312 E Catalog 

(12.pid = Tl.pid A 12.sid:;t; Tl.sid) 

A T .pid = Tl.pid)} 

• DRe 
{(x) I (X, Y, Z) E Catalog A 3A, B, C 

«A,B, C) E Catalog A B = Y A A :;t;X)} 



RELATIONAL DATA MODEL CONCEPTS 

• SQL 
SELECT C.pid 

FROM Catalog C 

WHERE EXISTS (SELECT C1.sid 

FROM Catalog Cl 

WHERE C1.pid = C.pid AND C1.sid ~ C.sid) 

11. • RA 

p(R1, .7lsid 0sname='Y osemiteSham' Suppliers) 

p (R2, R1 [Xl Catalog) 

p (R3,R2) 

P (R4(1 -+ sid, 2 -+ pid, 3 -+ cost), 0R3.cost<R2.cost (R3 X R2» 

.7lpid (R2 - .7lsid,pid,cost R4) 

• TRC 
{T I 3Tl E Catalog (3X E Suppliers 

(Xsname = 'YosemiteSham' A Xsid = Tlsid) A I (3S E Suppliers 

(Ssname = 'YosemiteSham' A 3Z E Catalog 

(Zsid = Ssid A Z.cost> Tl.cost») A T.pid = Tl.pid) 

• DRC 
{(Y) I (X, Y, Z) E Catalog A 3A, B, C 

«A, B, C) E Suppliers A C = 'Y osemiteSham' A A = X) 

A I (3P, Q, R«P, Q, R) E Suppliers A R = 'Y osemiteSham' 

A E/,I, K( (/,1, K) E Catalog (I = P A K > Z»»} 

• SQL 
SELECT C.pid 

FROM Catalog C, Suppliers S 

WHERE S.sname = 'Yosemite Sham' AND C.sid = S.sid 

AND c.sot ~ ALL (Select C2.cost 

FROM Catalog C2, Suppliers S2 

WHERE S2.sname = 'Yosemite Sham' 
AND C2.sid = S2.sid) 

115 



116 DATABASE MANAGEMENT SYSTEMS 

Q.34. Consider the Supplier-Parts-Catalog schema from the previous question. State what the 
following queries compute : 

1. Jrsname (Jrsid«ocolor = 'red' Parts) l><J (ocost<looCatalog» [Xl 'Suppliers) 

2. Jrsname (Jrsid«ocolor='red' Parts) I/J (ocost<looCatalog) [><J Suppliers» 

3. (Jrsnam e«ocolor= 'red' Parts) r,v~ (ocost<100 Catalog) [Xl Suppliers» n 
(Jrsname «Ocolor='green' Parts) I>~ (ocost<l00Catalog) [Xl Suppliers)) 

4. (Jrsid«ocolor='red' Parts) [Xl (ocost<lOO Catalog) [Xl Suppliers» n 

(Jrsid «ocolor = 'green' Parts) rxJ (ocost<100 Catalog) [>,1 Suppliers» 

5. Jrsname «Jrs1d,sname «ocolor='red' Parts) r",l (ocost<100 Catalog) [Xl Supplirs» n 

(Jrs1d,sname «Ocolor = 'green , Parts) I>~ (ocost<100 Catalog) [>l Suppliers))) 

Ans. The statments can be interpreted as : 
1. Find the Supplier names of the suppliers who supply a red part that costs less than 100 

dollars. 
2. This Relational Algebra statement does not return anything because of the sequence of 

projection operators. Once, the sid is projected, it is the only field in the set. Therefore, 
projecting on sname will not return anything. 

3. Find the Supplier names of the suppliers who supply a red part that costs less than 100 dollars 
and a green part that costs less than 100 dollars. 

4. Find the Supplier sid of the suppliers who supply a red part that costs less than 100 dollars 
and a green part that costs less than 100 dollars. 

5. Find the Supplier names of the suppliers who supply a red part that costs less than 100 dollars 
and a green part that costs less than 100 dollars. 

Student (snum : integer, sname : string, major: string, level: string, age: integer) 

Class (name : string, meets_at: string, room: string, fid : integer) 

Enrolled (mum: integer, cname : string) 

Faculty (fid : integer,fname : string, deptid : integer) 

The meaning of these relations is straightforward; for example, Enrolled has one record per 
student -class pair such that the student is enrolled in the class. 

Write the following queries in SQL. No duplicates should be printed in any of the answers. 
1. Find the names of all Juniors (level = JR) who are enrolled in a class taught by I. Teach. 
2. Find the age of the oldest student who is either a History major or enrolled in a course taught 

hy I Teach. 
1. Find the names of all classes that either meet in room Rl28 or have five or more students 

enrolled. 



RELATIONAL DATA MODEL CONCEPTS 117 

4. Find the names of all students who are enrolled in two classes that meet at the same time. 
5. Find the names of faculty members who teach in every room in which some class is taught. 
6. Find the names of faculty members for whom the combined enrollment of the courses that 

they teach is less than five. 
7. For each level, print the level and the average age of students for that level. 
8. For all levels except JR, print the level and the average age of students for that level. 
9. For each faculty member that has taught classes only in room R128, print the faculty 

member's name and the total number of classes she or he has taught. 
10. Find the names of students enrolled in the maximum number of classes. 
11. Find the names of students not enrolled in any class. 
12. For each age value that appears in Students, fmd the level value that appears most often.' 

For example, if there are more FR level students aged 18 than SR, JR, or SO students aged 
18;you should print the pair (18, FR). 

1. SELECT DISTINCT S.Sname 

FROM Studnet S, Class C, Enrolled E, Faculty F 

WHERE S.snum = E.snum AND E.cname = C.name AND C.fid = F.fid AND 

F.fname = 'I.Teach' AND S.level = 'JR'; 

2. SELEFT MAX (S.age) 

FROM Student S 

WHERE (S.major = 'History') 

OR S.snum IN (SELECT E.snum 

3. SELECT C.name 

FROM Class C 

WHERE C.room = 'R128' 

FROM Class C, Enrolled E, Faculty F 

WHERE E.cname = C.name AND C.fid = F.fid 

AND F.fname = 'I.Teach'); 

OR C.name IN (SELECT E.cname 

FROM Enrolled E 

GROUP BY E.cname 

4. SELECT DISTINCT S.sname 

FROM Studnet S 

HAVING COUNT (*) > = 5); 

WHERE S.snum IN (SELECT E1.snum 

FROM Enrolled El, Enrolled E2, Class C1, Class C2 

WHERE E1.snum = E2.snum AND E1.cname < > E2.cname 



118 DATABASE MANAGEMENT SYSTEMS 

AND El.cname = C1.name 

AND E2.cname = C2.name AND C1.meets_at = C2.meets_at); 

5. SELECT DISTINCT Efname 

FROM Faculty F 

WHERE NOT EXISTS ((SELECT * 

FROM Class C) 

EXCEPT 

(SELECT C1.room 

FROM Class Cl 
WHERE C1.fid = Efid)); 

6. SELECT DISTINCT Efname 

FROM Faculty F 

WHERE 5 > (SELECT COUNT (E.snum) 

FROM Class C, Enrolled E 
WHERE C.name = E.cname· 

AND C.fid = Efid); 

7. SELECT S.level, AVG(S.age) 

FROM Student S 

GROUP BY S.level; 

8. SELECT S.level, AVG(S.age) 

FROM Student S 
WHERE S.level < > 'JR' 

GROUP BY S.level; 

9. SELECT F.fname, COUNT(*) AS CourseCount 

FROM Faculty F, Class C 

WHERE Efid = C.fid 

GROUP BY Efid, Efname 

HAVING EVERY (C.room = 'Rl28'); 

10. SELECT DISTINCT S.sname 
FROM Student S 

WHERE S.snum IN (SELECT E.snum 
FROM Enrolled E 



RELATIONAL DATA MODEL CONCEPTS 

GROUP BY E.snum 

HAVING COUNT (*) > = ALL (SELECT COUNT (*) 

FROM Enrolled E2 

11. SELECT DISTINCT S.sname 

FROM Studnet S 

GROUP BY E2.snum» 

WHERE S.snum NOT IN (SELECT E.snum FROM Enrolled E) 

12. SELECT S.age, S.level 

FROM Student S 

GROUP BY S.age, S.level, 

HAVING S.level IN (SELECT Sl.level 

FROM Student S1 

WHERE S1.age = S.age 

GROUP BY Sl.level, S1.age 

HAVING COUNT (*) > = ALL (SELECT COUNT (*) 

FROM Student S2 

WHERE S1.age = S2.age 

GROUP BY S2.level, S2.age» 

Q. 35. The following relations keep track of airline flight information : 

Flights (fino: integer, from: string, to : string, distance: integer, 

119 

departs : time, arrives : time, price : real) 

Aircraft (aid: integer, aname : string, cruisingrange : integer) 

Certified (eid : integer, aid: integer) 

Employe~s (eid : integer, enarne : string, salary: integer) 

1. Find the names of aircraft such that all pilots certified to operate them have salaries more 
than $80,000. 

2. For each pilot who is certified for more than three aircraft, fmd the eid and the maximum 
cruisingrange of the aircraft for which she or he is certified. 

3. Find the names of pilots whose salary is less than the price of the cheapest route from Los 
Angeles to Honolulu. 

4. For all aircraft with cruisingrange over 1000 miles, find the name of the aircraft and the 
average salary of all pilots certified for this aircraft. 

5. Find the names of pilots certified for some Being aircraft. 
6. Find the aids of all aircraft that can be used on routes from Los Angles to Chicago. 
7. Identify the routes that can be piloted by every pilot who makes more than $100,000. 



120 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

DATABASE MANAGEMENT SYSTEMS 

Print the enames of pilots who can operate planes with cruisingrange greater than 30000 miles 
but are not certified on any Boeing aircraft. 
A customer wants to travel from Madison to New York with no more than two changes of 
flight. List the choice of departure times from Madison if the customer wants to arrive in 
New york by 6 p.m. 
Computer the difference between the average salary of a pilot and the average salary of all 
employees (including pilots). 
Print the name and salary of every nonpilot whose salary is more than the average salary for 
pilots. 
Print the names of employees who are certified only on aircrafts with cruising range longer 
than 10000 miles. 
Print the names of employees who are certified only on aircrafts with cruising range longer 
than 1000 miles, but on at least two such aircraft. 
Print the names of employees who are certified only on aircrafts with cruising rang longer 
than 1000 miles and who are certified on some Boeing aircraft. 

Ans. The answer are given below : 

1. SELECT DISTINCT Aaname 

FROM Aircraft A 

WHERE AAid IN (SELECT C.aid 

FROM Certified C, Employees E 

WHERE C.eid = E.eid AND 

NOT EXISTS (SELECT * 
FROM Employees E1 

WHERE El.eid = E.eid AND El.salary < 80000)); 

2. SELECT C.eid, MAX (Acruisingrange) 

FROM Certified C, Aircraft A 

WHERE C.aid = Aaid 

GROUP BY C.eid 

HAVING COUNT (*) > 3; 

3. SELECT DISTINCT E.ename 

FROM Employees E 

WHERE E.salary < (SELECT MIN (Eprice) 

FROM Flights F 

WHERE F.from = 'Los Angeles' AND Eto = 'Honolulu') 

4. Observe that aid is the key for Aircraft, but the question asks for aircraft names; we deal with 
this complication by using an intermediate relation Temp : 

SELECT Temp.name, Temp.AvgSalary 

FROM (SELECT A.aid, A.aname AS namt;, AVG (E. salary) AS AvgSalary 



RELATIONAL DATA MODEL CONCEPTS 

FROM Aircraft A, Certified C, Employees E 
WHERE A.aid = C.aid AND 

C.eid = E.eid AND Acruisingrange > 1000 
GROUP BY~.aid, Aaname) As Temp; 

5. SELECT DISTINCT E.ename 

FROM Employees E, Certified C, Aircraft A 
WHERE E.eid = C.eid AND 

C.aid = Aaid AND 
Aaname LIKE 'Boeing%'; 

6. SELECT a.aid 
FROM Aircraft A 

WHERE Acruisingrange > (SELECT MIN (F.distance) 
FROM Flights F 

WHERE F.from = 'Los Angeles' AND F.to = 'Chicago'); 

7. SELECT DISTINCT F.from, F.to 

FROM Flights F 
WHERE NOT EXISTS (SELECT >I< 

FROM Employees E 

WHERE E.salarY > 100000 

AND 
NOT EXISTS (SELECT >I< 

8. SELECT DISTINCT E.ename 
FROM Employees E 

FROM Aircraft A, Certified C 

WHERE Acruisingrange > F.distance 

AND E.eid = C.eid 

AND Aaid = C.aid» 

WHERE E.eid IN «SELECT C.eid 
FROM Certified C 
WHERE EXISTS (SELECT Aaid _ 

FROM Aircraft A 

WHERE Aaid = C.aid 

AND Acruisingrange > 3000) 

121 



122 DATABASE MANAGEMENT SYSTEMS 

AND 

NOT EXISTS (SELECT A1.aid 

9. SELECT Edeparts 

FROM Flights F 

FROM Aircraft A1 

WHERE A1.aid = C.aid 

AND A1.aname LIKE 'Boeing%'» 

WHERE Efino IN «SELECT FO.fino 

FROM Flights FO 

WHERE FO.from = 'Madison' AND FO.to = 'New York' 

AND FO.arrives < '18:00') 

UNION 

(SELECT FO.fino 

FROM Flights FO, Flights F1, Figiths F2 

WHERE FO.from = 'Madison' 

10. SELECT Temp1.avg - Temp2.avg 

AND FO.to = Fl.from 

AND F1.to = F2.from 

AND F2.to = 'New York' 

AND FO.to < > 'New York' 

AND F1.to < > 'New York' 

AND F1.departs > FO.arrives 

AND F2.departs > F1.arrives 

AND F2.arrives < '18:00'»; 

FROM (SELECT AVG (E.salary) AS avg 

FROM Employees E 

WHERE E.eid IN (SELECT DISTINCT C.eid 

FROM Certified C» AS Temp1, 

(SELECT AVG (E1.salary) AS avg 

FROM Employees E1) AS Temp2; 

11. SELECT E.ename, E.salary 

FROM Employees E 

WHERE E.eid NOT IN (SELECT DISTINCT C.eid 

FROM Certified C) 

AND E.salary > (SELECT AVG E1.salary) 



RELATIONAL DATA MODEL CONCEPTS 

FROM Employees E1 

WHERE E1.eid IN 

(SELECT DISTINCT C1.eid 

FROM Certified C1» 

12. SELECT E.ename 

13. 

14. 

FROM Employees E, Certified C, Aircraft A 

WHERE C.aid = A.aid ANI)" E.eid = C.eid 

GROUP BY E.eid, E.ename 

HAVING EVERY (A.cruisingrange > 1000) 

SELECT 

FROM 

WHERE 

GROUP 

HAVING 

E.ename 

Employees E, Certified C, Aircraft A 

C.aid = A.aid AND E.eid = C.eid 

BY E.eid, E.ename 

EVERY (A.crusingrange > 1000) AND COUNT (*) > 1 

E.ename 

Employees E, Certified C, Aircraft A 

C.aid = A.aid AND E.eid = C.eid 

BY E.eid, E.ename 

123 

SELECT 

FROM 

WHERE 

GROUP 

HAVING EVERY (A.cruisingrange > 1000) AND ANY (A.name = 'Boeing'); 



124 DATABASE MANAGEMENT SYSTEMS 

Review Questions 

1. In the context of a relational model, discuss each of the following concepts. 
(a) Relation (b) Attributes (c) Thple 
(d) Cardinality (e) Domain 

2. Discuss the various types of keys that are used in relational model. 
3. What do you mean by relational algebra? Derme all the operators of relational algebra. 
4. What do you mean by structure of relational model of database system? Explain the significance 

of domain and keys in the relational model. 
5. What is relational algebra? What is its use? List relational operators. 
6. What do you mean by relational calculus? What are the types of relational calculus? 
7. What is difference between JOIN & OUTER JOIN dperator? 
8. Describe the SELECT operation. What does it accomplish? 
9. Describe the PROJECT operation. What does it accomplish? 

10. Describe the JOIN operation. What does it accomplish. 
11. What is query language? What are its advantages? 
12. What is structured query language? What are its advantages and disadvantages? 
13. Explain the syntax of SOL for executing query. 
14. What are SOL operators? Explain it. 
15. Write short notes on the following : 

(i) Data Manipulation Language (DML). 
(ii) Data Definition Language (DDL). 
(iii) Transaction Control Statement (TCS). 
(iv) Data Control Language (DCL). 

16. How do we create lable? Views and index using SOL commands? 
17. Explain briefly the following: 

(i) Database cursor (ii) Database trigger 
(iii) Database packages 

18. Explain a sequence. 
19. What are safe expressions in tuple relational calculus? Explain with example. 
20. Explain trigger and assertion with suitable example. Write the assertion for the following 

statement : "Every loan has at least one customer who maintains an account with minimum 
balance of Rs. 1000 in banking system?" 

21. What is trigger? Explain the advantages of triggers with suitable example. 
22. Write a short notes on subqueries, aggregate functions, joins, indexes, sequences. 

DOD 


